IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011790.html
   My bibliography  Save this article

PandoGen: Generating complete instances of future SARS-CoV-2 sequences using Deep Learning

Author

Listed:
  • Anand Ramachandran
  • Steven S Lumetta
  • Deming Chen

Abstract

One of the challenges in a viral pandemic is the emergence of novel variants with different phenotypical characteristics. An ability to forecast future viral individuals at the sequence level enables advance preparation by characterizing the sequences and closing vulnerabilities in current preventative and therapeutic methods. In this article, we explore, in the context of a viral pandemic, the problem of generating complete instances of undiscovered viral protein sequences, which have a high likelihood of being discovered in the future using protein language models. Current approaches to training these models fit model parameters to a known sequence set, which does not suit pandemic forecasting as future sequences differ from known sequences in some respects. To address this, we develop a novel method, called PandoGen, to train protein language models towards the pandemic protein forecasting task. PandoGen combines techniques such as synthetic data generation, conditional sequence generation, and reward-based learning, enabling the model to forecast future sequences, with a high propensity to spread. Applying our method to modeling the SARS-CoV-2 Spike protein sequence, we find empirically that our model forecasts twice as many novel sequences with five times the case counts compared to a model that is 30× larger. Our method forecasts unseen lineages months in advance, whereas models 4× and 30× larger forecast almost no new lineages. When trained on data available up to a month before the onset of important Variants of Concern, our method consistently forecasts sequences belonging to those variants within tight sequence budgets.Author summary: Viral protein sequences play a pivotal role in the spread of a pandemic. As the virus evolves, so do the viral proteins, increasing the potency of the virus. Knowledge of future viral protein sequences can be invaluable because it allows us to test the efficacy of preventative and treatment methods against future changes to the virus, and tailor them to such changes early. We attempt to forecast viral proteins ahead of time. Making such predictions is very challenging and complex because the prediction target is a sequence with thousands of positions, and a single mis-predicted sequence position may invalidate the entire prediction. Also, as the virus continues to evolve, the data available to train models becomes obsolete. Addressing these challenges, we create a novel approach to train models of the SARS-CoV-2 Spike protein, that are especially tailored to forecasting future sequences. Models trained using this approach outperform existing approaches in their effectiveness. In addition, our method can train models to forecast important pandemic variants ahead of time.

Suggested Citation

  • Anand Ramachandran & Steven S Lumetta & Deming Chen, 2024. "PandoGen: Generating complete instances of future SARS-CoV-2 sequences using Deep Learning," PLOS Computational Biology, Public Library of Science, vol. 20(1), pages 1-31, January.
  • Handle: RePEc:plo:pcbi00:1011790
    DOI: 10.1371/journal.pcbi.1011790
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011790
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011790&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011790?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Jung-Eun Shin & Adam J. Riesselman & Aaron W. Kollasch & Conor McMahon & Elana Simon & Chris Sander & Aashish Manglik & Andrew C. Kruse & Debora S. Marks, 2021. "Protein design and variant prediction using autoregressive generative models," Nature Communications, Nature, vol. 12(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fatma-Elzahraa Eid & Albert T. Chen & Ken Y. Chan & Qin Huang & Qingxia Zheng & Isabelle G. Tobey & Simon Pacouret & Pamela P. Brauer & Casey Keyes & Megan Powell & Jencilin Johnston & Binhui Zhao & K, 2024. "Systematic multi-trait AAV capsid engineering for efficient gene delivery," Nature Communications, Nature, vol. 15(1), pages 1-14, December.
    2. Karol Buda & Charlotte M. Miton & Nobuhiko Tokuriki, 2023. "Pervasive epistasis exposes intramolecular networks in adaptive enzyme evolution," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    3. Mireia Seuma & Ben Lehner & Benedetta Bolognesi, 2022. "An atlas of amyloid aggregation: the impact of substitutions, insertions, deletions and truncations on amyloid beta fibril nucleation," Nature Communications, Nature, vol. 13(1), pages 1-13, December.
    4. Christoph Feinauer & Barthelemy Meynard-Piganeau & Carlo Lucibello, 2022. "Interpretable pairwise distillations for generative protein sequence models," PLOS Computational Biology, Public Library of Science, vol. 18(6), pages 1-20, June.
    5. Nicki Skafte Detlefsen & Søren Hauberg & Wouter Boomsma, 2022. "Learning meaningful representations of protein sequences," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    6. Kevin E. Wu & Kevin K. Yang & Rianne Berg & Sarah Alamdari & James Y. Zou & Alex X. Lu & Ava P. Amini, 2024. "Protein structure generation via folding diffusion," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    7. Emily K. Makowski & Patrick C. Kinnunen & Jie Huang & Lina Wu & Matthew D. Smith & Tiexin Wang & Alec A. Desai & Craig N. Streu & Yulei Zhang & Jennifer M. Zupancic & John S. Schardt & Jennifer J. Lin, 2022. "Co-optimization of therapeutic antibody affinity and specificity using machine learning models that generalize to novel mutational space," Nature Communications, Nature, vol. 13(1), pages 1-14, December.
    8. Haohuai He & Bing He & Lei Guan & Yu Zhao & Feng Jiang & Guanxing Chen & Qingge Zhu & Calvin Yu-Chian Chen & Ting Li & Jianhua Yao, 2024. "De novo generation of SARS-CoV-2 antibody CDRH3 with a pre-trained generative large language model," Nature Communications, Nature, vol. 15(1), pages 1-19, December.
    9. Jeffrey A. Ruffolo & Lee-Shin Chu & Sai Pooja Mahajan & Jeffrey J. Gray, 2023. "Fast, accurate antibody structure prediction from deep learning on massive set of natural antibodies," Nature Communications, Nature, vol. 14(1), pages 1-13, December.
    10. Lin Li & Esther Gupta & John Spaeth & Leslie Shing & Rafael Jaimes & Emily Engelhart & Randolph Lopez & Rajmonda S. Caceres & Tristan Bepler & Matthew E. Walsh, 2023. "Machine learning optimization of candidate antibody yields highly diverse sub-nanomolar affinity antibody libraries," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
    11. Erika Erickson & Japheth E. Gado & Luisana Avilán & Felicia Bratti & Richard K. Brizendine & Paul A. Cox & Raj Gill & Rosie Graham & Dong-Jin Kim & Gerhard König & William E. Michener & Saroj Poudel &, 2022. "Sourcing thermotolerant poly(ethylene terephthalate) hydrolase scaffolds from natural diversity," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
    12. Jonathan Parkinson & Ryan Hard & Wei Wang, 2023. "The RESP AI model accelerates the identification of tight-binding antibodies," Nature Communications, Nature, vol. 14(1), pages 1-18, December.
    13. Evgenii Lobzaev & Michael A. Herrera & Martyna Kasprzyk & Giovanni Stracquadanio, 2024. "Protein engineering using variational free energy approximation," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    14. Wenkang Wang & Yunyan Shuai & Min Zeng & Wei Fan & Min Li, 2025. "DPFunc: accurately predicting protein function via deep learning with domain-guided structure information," Nature Communications, Nature, vol. 16(1), pages 1-13, December.
    15. Ying Tang & Jing Liu & Jiang Zhang & Pan Zhang, 2024. "Learning nonequilibrium statistical mechanics and dynamical phase transitions," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    16. Evgenii Lobzaev & Giovanni Stracquadanio, 2024. "Dirichlet latent modelling enables effective learning and sampling of the functional protein design space," Nature Communications, Nature, vol. 15(1), pages 1-11, December.
    17. Eli J. Draizen & Stella Veretnik & Cameron Mura & Philip E. Bourne, 2024. "Deep generative models of protein structure uncover distant relationships across a continuous fold space," Nature Communications, Nature, vol. 15(1), pages 1-16, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011790. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.