Author
Listed:
- Niko Bernaola
- Mario Michiels
- Pedro Larrañaga
- Concha Bielza
Abstract
We present the Fast Greedy Equivalence Search (FGES)-Merge, a new method for learning the structure of gene regulatory networks via merging locally learned Bayesian networks, based on the fast greedy equivalent search algorithm. The method is competitive with the state of the art in terms of the Matthews correlation coefficient, which takes into account both precision and recall, while also improving upon it in terms of speed, scaling up to tens of thousands of variables and being able to use empirical knowledge about the topological structure of gene regulatory networks. To showcase the ability of our method to scale to massive networks, we apply it to learning the gene regulatory network for the full human genome using data from samples of different brain structures (from the Allen Human Brain Atlas). Furthermore, this Bayesian network model should predict interactions between genes in a way that is clear to experts, following the current trends in explainable artificial intelligence. To achieve this, we also present a new open-access visualization tool that facilitates the exploration of massive networks and can aid in finding nodes of interest for experimental tests.Author summary: In this study, we have developed a faster and scalable method, the Fast Greedy Equivalence Search (FGES)-Merge, to understand how genes interact and regulate each other. We adapted it specifically for massive gene regulatory networks, which can have tens of thousands of genes. Our method is not only competitive with the current best methods in terms of accuracy but also outperforms them in terms of speed. This is crucial when working with large scale data such as the human genome.
Suggested Citation
Niko Bernaola & Mario Michiels & Pedro Larrañaga & Concha Bielza, 2023.
"Learning massive interpretable gene regulatory networks of the human brain by merging Bayesian networks,"
PLOS Computational Biology, Public Library of Science, vol. 19(12), pages 1-25, December.
Handle:
RePEc:plo:pcbi00:1011443
DOI: 10.1371/journal.pcbi.1011443
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011443. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.