IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011315.html
   My bibliography  Save this article

Geometry of population activity in spiking networks with low-rank structure

Author

Listed:
  • Ljubica Cimeša
  • Lazar Ciric
  • Srdjan Ostojic

Abstract

Recurrent network models are instrumental in investigating how behaviorally-relevant computations emerge from collective neural dynamics. A recently developed class of models based on low-rank connectivity provides an analytically tractable framework for understanding of how connectivity structure determines the geometry of low-dimensional dynamics and the ensuing computations. Such models however lack some fundamental biological constraints, and in particular represent individual neurons in terms of abstract units that communicate through continuous firing rates rather than discrete action potentials. Here we examine how far the theoretical insights obtained from low-rank rate networks transfer to more biologically plausible networks of spiking neurons. Adding a low-rank structure on top of random excitatory-inhibitory connectivity, we systematically compare the geometry of activity in networks of integrate-and-fire neurons to rate networks with statistically equivalent low-rank connectivity. We show that the mean-field predictions of rate networks allow us to identify low-dimensional dynamics at constant population-average activity in spiking networks, as well as novel non-linear regimes of activity such as out-of-phase oscillations and slow manifolds. We finally exploit these results to directly build spiking networks that perform nonlinear computations.Author summary: Behaviorally relevant information processing is believed to emerge from interactions among neurons forming networks in the brain, and computational modeling is an important approach for understanding this process. Models of neuronal networks have been developed at different levels of detail, with typically a trade off between analytic tractability and biological realism. The relation between network connectivity, dynamics and computations is best understood in abstract models where individual neurons are represented as simplified units with continuous firing activity. Here we examine how far the results obtained in an analytically-tractable class of rate models extend to more biologically realistic spiking networks where neurons interact through discrete action potentials. Our results show that abstract rate models provide accurate predictions for the collective dynamics and the resulting computations in more biologically faithful spiking networks.

Suggested Citation

  • Ljubica Cimeša & Lazar Ciric & Srdjan Ostojic, 2023. "Geometry of population activity in spiking networks with low-rank structure," PLOS Computational Biology, Public Library of Science, vol. 19(8), pages 1-34, August.
  • Handle: RePEc:plo:pcbi00:1011315
    DOI: 10.1371/journal.pcbi.1011315
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011315
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011315&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011315?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:plo:pcbi00:1003258 is not listed on IDEAS
    Full references (including those not matched with items on IDEAS)

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011315. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.