Author
Listed:
- Alexander Tscshantz
- Beren Millidge
- Anil K Seth
- Christopher L Buckley
Abstract
Predictive coding is an influential model of cortical neural activity. It proposes that perceptual beliefs are furnished by sequentially minimising “prediction errors”—the differences between predicted and observed data. Implicit in this proposal is the idea that successful perception requires multiple cycles of neural activity. This is at odds with evidence that several aspects of visual perception—including complex forms of object recognition—arise from an initial “feedforward sweep” that occurs on fast timescales which preclude substantial recurrent activity. Here, we propose that the feedforward sweep can be understood as performing amortized inference (applying a learned function that maps directly from data to beliefs) and recurrent processing can be understood as performing iterative inference (sequentially updating neural activity in order to improve the accuracy of beliefs). We propose a hybrid predictive coding network that combines both iterative and amortized inference in a principled manner by describing both in terms of a dual optimization of a single objective function. We show that the resulting scheme can be implemented in a biologically plausible neural architecture that approximates Bayesian inference utilising local Hebbian update rules. We demonstrate that our hybrid predictive coding model combines the benefits of both amortized and iterative inference—obtaining rapid and computationally cheap perceptual inference for familiar data while maintaining the context-sensitivity, precision, and sample efficiency of iterative inference schemes. Moreover, we show how our model is inherently sensitive to its uncertainty and adaptively balances iterative and amortized inference to obtain accurate beliefs using minimum computational expense. Hybrid predictive coding offers a new perspective on the functional relevance of the feedforward and recurrent activity observed during visual perception and offers novel insights into distinct aspects of visual phenomenology.Author summary: Predictive Coding Networks (PCNs) are a neurobiologically plausible model of cortical processing that can be applied to machine learning tasks. However, they require a computationally costly inference phase to generate predictions. We propose adding an amortized feedforward network to the model which learns to predict the outcome of iterative inference, and uses these predictions to initialize the predictive coding network—an approach we call hybrid predictive coding. This allows our hybrid model to perform simultaneous classification and generation and can be trained much faster and with less data than a standard PCN. Our model can also naturally and adaptively vary its computation time according to task demands, and may also help shed light on the neurocomputational basis of some otherwise difficult-to-understand aspects of visual phenomenology, thus suggesting that the brain may utilize a similar hybrid inference approach in visual processing.
Suggested Citation
Alexander Tscshantz & Beren Millidge & Anil K Seth & Christopher L Buckley, 2023.
"Hybrid predictive coding: Inferring, fast and slow,"
PLOS Computational Biology, Public Library of Science, vol. 19(8), pages 1-31, August.
Handle:
RePEc:plo:pcbi00:1011280
DOI: 10.1371/journal.pcbi.1011280
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011280. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.