Author
Listed:
- Moritz Groden
- Hannah M Moessinger
- Barbara Schaffran
- Javier DeFelipe
- Ruth Benavides-Piccione
- Hermann Cuntz
- Peter Jedlicka
Abstract
Investigating and modelling the functionality of human neurons remains challenging due to the technical limitations, resulting in scarce and incomplete 3D anatomical reconstructions. Here we used a morphological modelling approach based on optimal wiring to repair the parts of a dendritic morphology that were lost due to incomplete tissue samples. In Drosophila, where dendritic regrowth has been studied experimentally using laser ablation, we found that modelling the regrowth reproduced a bimodal distribution between regeneration of cut branches and invasion by neighbouring branches. Interestingly, our repair model followed growth rules similar to those for the generation of a new dendritic tree. To generalise the repair algorithm from Drosophila to mammalian neurons, we artificially sectioned reconstructed dendrites from mouse and human hippocampal pyramidal cell morphologies, and showed that the regrown dendrites were morphologically similar to the original ones. Furthermore, we were able to restore their electrophysiological functionality, as evidenced by the recovery of their firing behaviour. Importantly, we show that such repairs also apply to other neuron types including hippocampal granule cells and cerebellar Purkinje cells. We then extrapolated the repair to incomplete human CA1 pyramidal neurons, where the anatomical boundaries of the particular brain areas innervated by the neurons in question were known. Interestingly, the repair of incomplete human dendrites helped to simulate the recently observed increased synaptic thresholds for dendritic NMDA spikes in human versus mouse dendrites. To make the repair tool available to the neuroscience community, we have developed an intuitive and simple graphical user interface (GUI), which is available in the TREES toolbox (www.treestoolbox.org).Author summary: Reconstructing neuronal dendrites by drawing their 3D branching structures in the computer has proved to be crucial for interpreting the flow of electrical signals and therefore the computations that dendrites perform on their inputs. These reconstructions are tedious and prone to disruptive limitations imposed by experimental procedures. In recent years, complementary computational procedures have emerged that reproduce the fine details of morphology in theoretical models. These models allow, for example, to populate large-scale neural networks and to study structure-function relationships. In this work we use a morphological model based on optimised wiring for signal conduction and material cost to repair faulty reconstructions. This is particularly relevant for human hippocampal dendrites, as data on their morphology is scarce and valuable but frequently compromised by technical limitations. Interestingly, we find that our synthetic repair mechanism reproduces the two distinct modes of repair observed in real dendrites: regeneration from the severed branch and invasion from neighbouring branches. Our model therefore provides both a useful tool for single-cell electrophysiological simulations and a useful theoretical concept for studying the biology of dendrite repair.
Suggested Citation
Moritz Groden & Hannah M Moessinger & Barbara Schaffran & Javier DeFelipe & Ruth Benavides-Piccione & Hermann Cuntz & Peter Jedlicka, 2024.
"A biologically inspired repair mechanism for neuronal reconstructions with a focus on human dendrites,"
PLOS Computational Biology, Public Library of Science, vol. 20(2), pages 1-32, February.
Handle:
RePEc:plo:pcbi00:1011267
DOI: 10.1371/journal.pcbi.1011267
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011267. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.