IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1011244.html
   My bibliography  Save this article

Mechanisms of sensorimotor adaptation in a hierarchical state feedback control model of speech

Author

Listed:
  • Kwang S Kim
  • Jessica L Gaines
  • Benjamin Parrell
  • Vikram Ramanarayanan
  • Srikantan S Nagarajan
  • John F Houde

Abstract

Upon perceiving sensory errors during movements, the human sensorimotor system updates future movements to compensate for the errors, a phenomenon called sensorimotor adaptation. One component of this adaptation is thought to be driven by sensory prediction errors–discrepancies between predicted and actual sensory feedback. However, the mechanisms by which prediction errors drive adaptation remain unclear. Here, auditory prediction error-based mechanisms involved in speech auditory-motor adaptation were examined via the feedback aware control of tasks in speech (FACTS) model. Consistent with theoretical perspectives in both non-speech and speech motor control, the hierarchical architecture of FACTS relies on both the higher-level task (vocal tract constrictions) as well as lower-level articulatory state representations. Importantly, FACTS also computes sensory prediction errors as a part of its state feedback control mechanism, a well-established framework in the field of motor control. We explored potential adaptation mechanisms and found that adaptive behavior was present only when prediction errors updated the articulatory-to-task state transformation. In contrast, designs in which prediction errors updated forward sensory prediction models alone did not generate adaptation. Thus, FACTS demonstrated that 1) prediction errors can drive adaptation through task-level updates, and 2) adaptation is likely driven by updates to task-level control rather than (only) to forward predictive models. Additionally, simulating adaptation with FACTS generated a number of important hypotheses regarding previously reported phenomena such as identifying the source(s) of incomplete adaptation and driving factor(s) for changes in the second formant frequency during adaptation to the first formant perturbation. The proposed model design paves the way for a hierarchical state feedback control framework to be examined in the context of sensorimotor adaptation in both speech and non-speech effector systems.Author summary: When we move, our brain predicts the sensory feedback that would result from the movement, and can quickly adjust future movements based on any sensory prediction errors—differences between the predictions and actual sensory feedback. This learning process, sensorimotor adaptation, has been extensively studied in many movements (e.g., walking, reaching, speaking), but its underlying mechanisms remain largely unclear. Here, we examined mechanisms driving speech adaptation in response to altered auditory feedback using the FACTS model, a hierarchical state feedback control model of speech in which a high-level controller achieves speech goals (e.g., constrictions of the vocal tract) by directing a low-level controller that moves the speech articulators (e.g., positions of the jaw and the tongue). We demonstrated that prediction errors can drive adaptation through changes in high-level control, but not solely through changes in predictions of movement outcomes or low-level control. In addition to replicating multiple key features of sensorimotor adaptation in speech, our simulations also generated potential new explanations for phenomena that are currently poorly understood. Importantly, given that our model design is closely aligned with widely accepted motor control frameworks outside of speech, these results have the potential to be broadly applicable to non-speech motor systems as well.

Suggested Citation

  • Kwang S Kim & Jessica L Gaines & Benjamin Parrell & Vikram Ramanarayanan & Srikantan S Nagarajan & John F Houde, 2023. "Mechanisms of sensorimotor adaptation in a hierarchical state feedback control model of speech," PLOS Computational Biology, Public Library of Science, vol. 19(7), pages 1-39, July.
  • Handle: RePEc:plo:pcbi00:1011244
    DOI: 10.1371/journal.pcbi.1011244
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1011244
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1011244&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1011244?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011244. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.