Author
Listed:
- Tyler W H Backman
- Christina Schenk
- Tijana Radivojevic
- David Ando
- Jahnavi Singh
- Jeffrey J Czajka
- Zak Costello
- Jay D Keasling
- Yinjie Tang
- Elena Akhmatskaya
- Hector Garcia Martin
Abstract
Metabolic fluxes, the number of metabolites traversing each biochemical reaction in a cell per unit time, are crucial for assessing and understanding cell function. 13C Metabolic Flux Analysis (13C MFA) is considered to be the gold standard for measuring metabolic fluxes. 13C MFA typically works by leveraging extracellular exchange fluxes as well as data from 13C labeling experiments to calculate the flux profile which best fit the data for a small, central carbon, metabolic model. However, the nonlinear nature of the 13C MFA fitting procedure means that several flux profiles fit the experimental data within the experimental error, and traditional optimization methods offer only a partial or skewed picture, especially in “non-gaussian” situations where multiple very distinct flux regions fit the data equally well. Here, we present a method for flux space sampling through Bayesian inference (BayFlux), that identifies the full distribution of fluxes compatible with experimental data for a comprehensive genome-scale model. This Bayesian approach allows us to accurately quantify uncertainty in calculated fluxes. We also find that, surprisingly, the genome-scale model of metabolism produces narrower flux distributions (reduced uncertainty) than the small core metabolic models traditionally used in 13C MFA. The different results for some reactions when using genome-scale models vs core metabolic models advise caution in assuming strong inferences from 13C MFA since the results may depend significantly on the completeness of the model used. Based on BayFlux, we developed and evaluated novel methods (P-13C MOMA and P-13C ROOM) to predict the biological results of a gene knockout, that improve on the traditional MOMA and ROOM methods by quantifying prediction uncertainty.Author summary: 13C MFA practitioners know that modeling results can be sensitive to minor modifications of the metabolic model. Certain parts of the metabolic model that are not well mapped to a molecular mechanism (e.g. drains to biomass or ATP maintenance) can have an inordinate impact on the final fluxes. The only way to ascertain the validity of the model is by checking that the result does not significantly differ from previously observed flux profiles. However, that approach diminishes the possibility of discovering truly novel flux profiles. Because of this strong dependence on metabolic model details, it would be very useful to have a systematic and repeatable way to produce these metabolic models. And indeed there is one: genome-scale metabolic models can be systematically obtained from genomic sequences, and represent all the known genomically encoded metabolic information. However, these models are much larger than the traditionally used central carbon metabolism models. Hence, the number of degrees of freedom of the model (fluxes) significantly exceeds the number of measurements (metabolite labeling profiles and exchange fluxes). As a result, one expects many flux profiles compatible with the experimental data. The best way to represent these is by identifying all fluxes compatible with the experimental data. Our novel method BayFlux, based on Bayesian inference and Markov Chain Monte Carlo sampling, provides this capability. Interestingly, this approach leads to the observation that some traditional optimization approaches can significantly overestimate flux uncertainty, and that genome-scale models of metabolism produce narrower flux distributions than the small core metabolic models that are traditionally used in 13C MFA. Furthermore, we show that the extra information provided by this approach allows us to improve knockout predictions, compared to traditional methods. Although the method scales well with more reactions, improvements will be needed to tackle the large metabolic models found in microbiomes and human metabolism.
Suggested Citation
Tyler W H Backman & Christina Schenk & Tijana Radivojevic & David Ando & Jahnavi Singh & Jeffrey J Czajka & Zak Costello & Jay D Keasling & Yinjie Tang & Elena Akhmatskaya & Hector Garcia Martin, 2023.
"BayFlux: A Bayesian method to quantify metabolic Fluxes and their uncertainty at the genome scale,"
PLOS Computational Biology, Public Library of Science, vol. 19(11), pages 1-26, November.
Handle:
RePEc:plo:pcbi00:1011111
DOI: 10.1371/journal.pcbi.1011111
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1011111. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.