Author
Listed:
- Diana C Burk
- Bruno B Averbeck
Abstract
Choice impulsivity is characterized by the choice of immediate, smaller reward options over future, larger reward options, and is often thought to be associated with negative life outcomes. However, some environments make future rewards more uncertain, and in these environments impulsive choices can be beneficial. Here we examined the conditions under which impulsive vs. non-impulsive decision strategies would be advantageous. We used Markov Decision Processes (MDPs) to model three common decision-making tasks: Temporal Discounting, Information Sampling, and an Explore-Exploit task. We manipulated environmental variables to create circumstances where future outcomes were relatively uncertain. We then manipulated the discount factor of an MDP agent, which affects the value of immediate versus future rewards, to model impulsive and non-impulsive behavior. This allowed us to examine the performance of impulsive and non-impulsive agents in more or less predictable environments. In Temporal Discounting, we manipulated the transition probability to delayed rewards and found that the agent with the lower discount factor (i.e. the impulsive agent) collected more average reward than the agent with a higher discount factor (the non-impulsive agent) by selecting immediate reward options when the probability of receiving the future reward was low. In the Information Sampling task, we manipulated the amount of information obtained with each sample. When sampling led to small information gains, the impulsive MDP agent collected more average reward than the non-impulsive agent. Third, in the Explore-Exploit task, we manipulated the substitution rate for novel options. When the substitution rate was high, the impulsive agent again performed better than the non-impulsive agent, as it explored the novel options less and instead exploited options with known reward values. The results of these analyses show that impulsivity can be advantageous in environments that are unexpectedly uncertain.Author summary: Impulsive choice behavior, or valuing immediate smaller rewards over larger, delayed rewards, is typically considered to be detrimental in decision-making. In this study, we use Markov Decision Processes (MDPs) to demonstrate that impulsive choices can be beneficial in three common decision-making tasks: Temporal Discounting, Information Sampling and an Explore-Exploit task. Specifically, we found that when a task environment is more uncertain than expected, an impulsive agent can collect more average reward than a non-impulsive agent. Our work suggests that impulsivity is not inherently negative. Valuing immediate rewards over delayed rewards can be an adaptive strategy when faced with uncertainty.
Suggested Citation
Diana C Burk & Bruno B Averbeck, 2023.
"Environmental uncertainty and the advantage of impulsive choice strategies,"
PLOS Computational Biology, Public Library of Science, vol. 19(1), pages 1-34, January.
Handle:
RePEc:plo:pcbi00:1010873
DOI: 10.1371/journal.pcbi.1010873
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010873. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.