Author
Listed:
- Takayuki Niizato
- Hisashi Murakami
- Takuya Musha
Abstract
Critical phenomena are wildly observed in living systems. If the system is at criticality, it can quickly transfer information and achieve optimal response to external stimuli. Especially, animal collective behavior has numerous critical properties, which are related to other research regions, such as the brain system. Although the critical phenomena influencing collective behavior have been extensively studied, two important aspects require clarification. First, these critical phenomena never occur on a single scale but are instead nested from the micro- to macro-levels (e.g., from a Lévy walk to scale-free correlation). Second, the functional role of group criticality is unclear. To elucidate these aspects, the ambiguous interaction model is constructed in this study; this model has a common framework and is a natural extension of previous representative models (such as the Boids and Vicsek models). We demonstrate that our model can explain the nested criticality of collective behavior across several scales (considering scale-free correlation, super diffusion, Lévy walks, and 1/f fluctuation for relative velocities). Our model can also explain the relationship between scale-free correlation and group turns. To examine this relation, we propose a new method, applying partial information decomposition (PID) to two scale-free induced subgroups. Using PID, we construct information flows between two scale-free induced subgroups and find that coupling of the group morphology (i.e., the velocity distributions) and its fluctuation power (i.e., the fluctuation distributions) likely enable rapid group turning. Thus, the flock morphology may help its internal fluctuation convert to dynamic behavior. Our result sheds new light on the role of group morphology, which is relatively unheeded, retaining the importance of fluctuation dynamics in group criticality.Author summary: To investigate the critical phenomena influencing collective behavior, we propose the ambiguous interaction model as a natural extension of the Boids model. Our proposed model exhibits various critical properties with respect to real-world collective behavior depending on the parameter settings (scale-free correlation, Lévy-walk behavior, and 1/f fluctuations in the center-of-mass frame). The results show that individual and group criticalities originate from the single algorithm employed by our model.
Suggested Citation
Takayuki Niizato & Hisashi Murakami & Takuya Musha, 2023.
"Functional duality in group criticality via ambiguous interactions,"
PLOS Computational Biology, Public Library of Science, vol. 19(2), pages 1-24, February.
Handle:
RePEc:plo:pcbi00:1010869
DOI: 10.1371/journal.pcbi.1010869
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010869. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.