IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010813.html
   My bibliography  Save this article

Bayesian reconstruction of memories stored in neural networks from their connectivity

Author

Listed:
  • Sebastian Goldt
  • Florent Krzakala
  • Lenka Zdeborová
  • Nicolas Brunel

Abstract

The advent of comprehensive synaptic wiring diagrams of large neural circuits has created the field of connectomics and given rise to a number of open research questions. One such question is whether it is possible to reconstruct the information stored in a recurrent network of neurons, given its synaptic connectivity matrix. Here, we address this question by determining when solving such an inference problem is theoretically possible in specific attractor network models and by providing a practical algorithm to do so. The algorithm builds on ideas from statistical physics to perform approximate Bayesian inference and is amenable to exact analysis. We study its performance on three different models, compare the algorithm to standard algorithms such as PCA, and explore the limitations of reconstructing stored patterns from synaptic connectivity.Author summary: One of the central hypothesis of neuroscience is that memories are stored in synaptic connectivity. Theoretical models show how large numbers of memories can be stored in recurrent neural circuits thanks to synaptic plasticity mechanisms. Recent advances in serial block-face electron microscopy, and machine learning methods, are making it possible to fully reconstruct the synaptic connectivity of neuronal circuits of increasingly large volumes. Here, we ask the question to what extent it is possible to reconstruct memories stored in a neural circuit from the knowledge of its synaptic connectivity. We present an approximate Bayesian inference algorithm, and study its properties on specific attractor network models.

Suggested Citation

  • Sebastian Goldt & Florent Krzakala & Lenka Zdeborová & Nicolas Brunel, 2023. "Bayesian reconstruction of memories stored in neural networks from their connectivity," PLOS Computational Biology, Public Library of Science, vol. 19(1), pages 1-27, January.
  • Handle: RePEc:plo:pcbi00:1010813
    DOI: 10.1371/journal.pcbi.1010813
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010813
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010813&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010813?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. repec:plo:pbio00:0030068 is not listed on IDEAS
    2. Ranulfo Romo & Carlos D. Brody & Adrián Hernández & Luis Lemus, 1999. "Neuronal correlates of parametric working memory in the prefrontal cortex," Nature, Nature, vol. 399(6735), pages 470-473, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sacha Jennifer van Albada & Moritz Helias & Markus Diesmann, 2015. "Scalability of Asynchronous Networks Is Limited by One-to-One Mapping between Effective Connectivity and Correlations," PLOS Computational Biology, Public Library of Science, vol. 11(9), pages 1-37, September.
    2. Gabriel D Puccini & Maria V Sanchez-Vives & Albert Compte, 2007. "Integrated Mechanisms of Anticipation and Rate-of-Change Computations in Cortical Circuits," PLOS Computational Biology, Public Library of Science, vol. 3(5), pages 1-13, May.
    3. Kaushik J. Lakshminarasimhan & Eric Avila & Xaq Pitkow & Dora E. Angelaki, 2023. "Dynamical latent state computation in the male macaque posterior parietal cortex," Nature Communications, Nature, vol. 14(1), pages 1-20, December.
    4. repec:plo:pbio00:3000625 is not listed on IDEAS
    5. Francesco Ceccarelli & Lorenzo Ferrucci & Fabrizio Londei & Surabhi Ramawat & Emiliano Brunamonti & Aldo Genovesio, 2023. "Static and dynamic coding in distinct cell types during associative learning in the prefrontal cortex," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    6. Juan Linde-Domingo & Bernhard Spitzer, 2024. "Geometry of visuospatial working memory information in miniature gaze patterns," Nature Human Behaviour, Nature, vol. 8(2), pages 336-348, February.
    7. repec:plo:pbio00:1002319 is not listed on IDEAS
    8. Yue Liu & Xiao-Jing Wang, 2024. "Flexible gating between subspaces in a neural network model of internally guided task switching," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
    9. Xin Wei Chia & Jian Kwang Tan & Lee Fang Ang & Tsukasa Kamigaki & Hiroshi Makino, 2023. "Emergence of cortical network motifs for short-term memory during learning," Nature Communications, Nature, vol. 14(1), pages 1-17, December.
    10. repec:plo:pcbi00:1002266 is not listed on IDEAS
    11. Brian DePasquale & Christopher J Cueva & Kanaka Rajan & G Sean Escola & L F Abbott, 2018. "full-FORCE: A target-based method for training recurrent networks," PLOS ONE, Public Library of Science, vol. 13(2), pages 1-18, February.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010813. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.