Author
Listed:
- Jean-David Morel
- Jean-Michel Morel
- Luis Alvarez
Abstract
The COVID-19 pandemy has created a radically new situation where most countries provide raw measurements of their daily incidence and disclose them in real time. This enables new machine learning forecast strategies where the prediction might no longer be based just on the past values of the current incidence curve, but could take advantage of observations in many countries. We present such a simple global machine learning procedure using all past daily incidence trend curves. Each of the 27,418 COVID-19 incidence trend curves in our database contains the values of 56 consecutive days extracted from observed incidence curves across 61 world regions and countries. Given a current incidence trend curve observed over the past four weeks, its forecast in the next four weeks is computed by matching it with the first four weeks of all samples, and ranking them by their similarity to the query curve. Then the 28 days forecast is obtained by a statistical estimation combining the values of the 28 last observed days in those similar samples. Using comparison performed by the European Covid-19 Forecast Hub with the current state of the art forecast methods, we verify that the proposed global learning method, EpiLearn, compares favorably to methods forecasting from a single past curve.Author summary: Forecasting the short time evolution of the COVID-19 daily incidence is a key issue in the epidemic decision making policy. We propose a machine learning method which forecasts the future values of the daily incidence trend based on the evolution of other incidence trend curves that were similar to the current one in the past. Using comparison performed by the European Covid-19 Forecast Hub with the current state of the art forecast methods, we verify that the proposed global learning method, EpiLearn compares favorably to methods that forecast from a single past curve.
Suggested Citation
Jean-David Morel & Jean-Michel Morel & Luis Alvarez, 2023.
"Learning from the past: A short term forecast method for the COVID-19 incidence curve,"
PLOS Computational Biology, Public Library of Science, vol. 19(6), pages 1-20, June.
Handle:
RePEc:plo:pcbi00:1010790
DOI: 10.1371/journal.pcbi.1010790
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010790. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.