IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010681.html
   My bibliography  Save this article

Comparing T cell receptor repertoires using optimal transport

Author

Listed:
  • Branden J Olson
  • Stefan A Schattgen
  • Paul G Thomas
  • Philip Bradley
  • Frederick A Matsen IV

Abstract

The complexity of entire T cell receptor (TCR) repertoires makes their comparison a difficult but important task. Current methods of TCR repertoire comparison can incur a high loss of distributional information by considering overly simplistic sequence- or repertoire-level characteristics. Optimal transport methods form a suitable approach for such comparison given some distance or metric between values in the sample space, with appealing theoretical and computational properties. In this paper we introduce a nonparametric approach to comparing empirical TCR repertoires that applies the Sinkhorn distance, a fast, contemporary optimal transport method, and a recently-created distance between TCRs called TCRdist. We show that our methods identify meaningful differences between samples from distinct TCR distributions for several case studies, and compete with more complicated methods despite minimal modeling assumptions and a simpler pipeline.Author summary: T cells are critical for a successful adaptive immune response, largely due to the expression of highly diverse receptor proteins on their surfaces. These T cell receptors (TCRs) recognize peptides that may be foreign invaders such as viruses or bacteria. Because of this, immunologists are often interested in comparing different sets (or repertoires) of these TCRs in hopes of identifying groups of particular interest, such as TCRs that are responding to a particular vaccination using pre- and post-vaccination samples. Current methods of comparing TCR repertoires either rely on statistical models which may not adequately describe the data, use summary statistics that may lose information, or are difficult to interpret. We present a complementary method of comparing TCR repertoires that detects significantly different TCRs between two given repertoires using a distance rather than a model, summary statistics, or dimension reduction. We demonstrate that our method can identify biologically meaningful repertoire differences using several case studies.

Suggested Citation

  • Branden J Olson & Stefan A Schattgen & Paul G Thomas & Philip Bradley & Frederick A Matsen IV, 2022. "Comparing T cell receptor repertoires using optimal transport," PLOS Computational Biology, Public Library of Science, vol. 18(12), pages 1-28, December.
  • Handle: RePEc:plo:pcbi00:1010681
    DOI: 10.1371/journal.pcbi.1010681
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010681
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010681&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010681?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Martin M. Corcoran & Ganesh E. Phad & Néstor Vázquez Bernat & Christiane Stahl-Hennig & Noriyuki Sumida & Mats A.A. Persson & Marcel Martin & Gunilla B. Karlsson Hedestam, 2016. "Production of individualized V gene databases reveals high levels of immunoglobulin genetic diversity," Nature Communications, Nature, vol. 7(1), pages 1-14, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Fredrika Hellgren & Alberto Cagigi & Rodrigo Arcoverde Cerveira & Sebastian Ols & Theresa Kern & Ang Lin & Bengt Eriksson & Michael G. Dodds & Edith Jasny & Kim Schwendt & Conrad Freuling & Thomas Mül, 2023. "Unmodified rabies mRNA vaccine elicits high cross-neutralizing antibody titers and diverse B cell memory responses," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
    2. Marco Mandolesi & Hrishikesh Das & Liset Vries & Yiqiu Yang & Changil Kim & Manojj Dhinakaran & Xaquin Castro Dopico & Julian Fischbach & Sungyong Kim & Mariia V. Guryleva & Monika Àdori & Mark Cherny, 2024. "Multi-compartmental diversification of neutralizing antibody lineages dissected in SARS-CoV-2 spike-immunized macaques," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    3. Mark Chernyshev & Mrunal Sakharkar & Ruth I. Connor & Haley L. Dugan & Daniel J. Sheward & C. G. Rappazzo & Aron Stålmarck & Mattias N. E. Forsell & Peter F. Wright & Martin Corcoran & Ben Murrell & L, 2023. "Vaccination of SARS-CoV-2-infected individuals expands a broad range of clonally diverse affinity-matured B cell lineages," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010681. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.