Author
Listed:
- Michael D Kupperman
- Thomas Leitner
- Ruian Ke
Abstract
Pathogen genomic sequence data are increasingly made available for epidemiological monitoring. A main interest is to identify and assess the potential of infectious disease outbreaks. While popular methods to analyze sequence data often involve phylogenetic tree inference, they are vulnerable to errors from recombination and impose a high computational cost, making it difficult to obtain real-time results when the number of sequences is in or above the thousands.Here, we propose an alternative strategy to outbreak detection using genomic data based on deep learning methods developed for image classification. The key idea is to use a pairwise genetic distance matrix calculated from viral sequences as an image, and develop convolutional neutral network (CNN) models to classify areas of the images that show signatures of active outbreak, leading to identification of subsets of sequences taken from an active outbreak. We showed that our method is efficient in finding HIV-1 outbreaks with R0 ≥ 2.5, and overall a specificity exceeding 98% and sensitivity better than 92%. We validated our approach using data from HIV-1 CRF01 in Europe, containing both endemic sequences and a well-known dual outbreak in intravenous drug users. Our model accurately identified known outbreak sequences in the background of slower spreading HIV. Importantly, we detected both outbreaks early on, before they were over, implying that had this method been applied in real-time as data became available, one would have been able to intervene and possibly prevent the extent of these outbreaks. This approach is scalable to processing hundreds of thousands of sequences, making it useful for current and future real-time epidemiological investigations, including public health monitoring using large databases and especially for rapid outbreak identification.Author summary: The analysis of pathogen genomic data to analyze epidemics at scale is constrained by the computational cost associated with phylogenetic tree reconstruction. As a fast and efficient alternative, we employed convolutional neural networks to analyze evolutionary pairwise distance matrices as images to perform classifications of the current epidemiological situation of a growing public health sequence database. We used simulated data to train and test our model, and as validation we accurately mapped the start and end of two linked well-documented HIV-1 outbreaks in the backdrop of ongoing slower HIV spread. Thus, our new approach is efficient, accurate, scalable, and can analyze data in real time.
Suggested Citation
Michael D Kupperman & Thomas Leitner & Ruian Ke, 2022.
"A deep learning approach to real-time HIV outbreak detection using genetic data,"
PLOS Computational Biology, Public Library of Science, vol. 18(10), pages 1-20, October.
Handle:
RePEc:plo:pcbi00:1010598
DOI: 10.1371/journal.pcbi.1010598
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010598. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.