IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010479.html
   My bibliography  Save this article

Optimal control methods for nonlinear parameter estimation in biophysical neuron models

Author

Listed:
  • Nirag Kadakia

Abstract

Functional forms of biophysically-realistic neuron models are constrained by neurobiological and anatomical considerations, such as cell morphologies and the presence of known ion channels. Despite these constraints, neuron models still contain unknown static parameters which must be inferred from experiment. This inference task is most readily cast into the framework of state-space models, which systematically takes into account partial observability and measurement noise. Inferring only dynamical state variables such as membrane voltages is a well-studied problem, and has been approached with a wide range of techniques beginning with the well-known Kalman filter. Inferring both states and fixed parameters, on the other hand, is less straightforward. Here, we develop a method for joint parameter and state inference that combines traditional state space modeling with chaotic synchronization and optimal control. Our methods are tailored particularly to situations with considerable measurement noise, sparse observability, very nonlinear or chaotic dynamics, and highly uninformed priors. We illustrate our approach both in a canonical chaotic model and in a phenomenological neuron model, showing that many unknown parameters can be uncovered reliably and accurately from short and noisy observed time traces. Our method holds promise for estimation in larger-scale systems, given ongoing improvements in calcium reporters and genetically-encoded voltage indicators.Author Summary: Systems neuroscience aims to understand how individual neurons and neural networks process external stimuli into behavioral responses. Underlying this characterization are mathematical models intimately shaped by experimental observations. But neural systems are high-dimensional and contain highly nonlinear interactions, so developing accurate models remains a challenge given current experimental capabilities. In practice, this means that the dynamical equations characterizing neural activity have many unknown parameters, and these parameters must be inferred from data. This inference problem is nontrivial owing to model nonlinearity, system and measurement noise, and the sparsity of observations from electrode recordings. Here, we present a novel method for inferring model parameters of neural systems. Our technique combines ideas from control theory and optimization, and amounts to using data to “control” estimates toward the best fit. Our method compares well in accuracy against other state-of-the-art inference methods, both in phenomenological chaotic systems and biophysical neuron models. Our work shows that many unknown model parameters of interest can be inferred from voltage measurements, despite signaling noise, instrument noise, and low observability.

Suggested Citation

  • Nirag Kadakia, 2022. "Optimal control methods for nonlinear parameter estimation in biophysical neuron models," PLOS Computational Biology, Public Library of Science, vol. 18(9), pages 1-24, September.
  • Handle: RePEc:plo:pcbi00:1010479
    DOI: 10.1371/journal.pcbi.1010479
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010479
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010479&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010479?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010479. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.