IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010464.html
   My bibliography  Save this article

A normative model of peripersonal space encoding as performing impact prediction

Author

Listed:
  • Zdenek Straka
  • Jean-Paul Noel
  • Matej Hoffmann

Abstract

Accurately predicting contact between our bodies and environmental objects is paramount to our evolutionary survival. It has been hypothesized that multisensory neurons responding both to touch on the body, and to auditory or visual stimuli occurring near them—thus delineating our peripersonal space (PPS)—may be a critical player in this computation. However, we lack a normative account (i.e., a model specifying how we ought to compute) linking impact prediction and PPS encoding. Here, we leverage Bayesian Decision Theory to develop such a model and show that it recapitulates many of the characteristics of PPS. Namely, a normative model of impact prediction (i) delineates a graded boundary between near and far space, (ii) demonstrates an enlargement of PPS as the speed of incoming stimuli increases, (iii) shows stronger contact prediction for looming than receding stimuli—but critically is still present for receding stimuli when observation uncertainty is non-zero—, (iv) scales with the value we attribute to environmental objects, and finally (v) can account for the differing sizes of PPS for different body parts. Together, these modeling results support the conjecture that PPS reflects the computation of impact prediction, and make a number of testable predictions for future empirical studies.Author summary: The brain has neurons that respond to touch on the body, as well as to auditory or visual stimuli occurring near the body. These neurons delineate a graded boundary between the near and far space. Here, we aim at understanding whether the function of these neurons is to predict future impact between the environment and body. To do so, we build a mathematical model that is statistically optimal at predicting future impact, taking into account the costs incurred by an impending collision. Then we examine if its properties are similar to those of the above-mentioned neurons. We find that the model (i) differentiates between the near and far space in a graded fashion, predicts different near/far boundary depths for different (ii) body parts, (iii) object speeds and (iv) directions, and (v) that this boundary scales with the value we attribute to environmental objects. These properties have all been described in behavioral studies and ascribed to neurons responding to objects near the body. Together, these findings suggest why the brain has neurons that respond only to objects near the body: to compute predictions of impact.

Suggested Citation

  • Zdenek Straka & Jean-Paul Noel & Matej Hoffmann, 2022. "A normative model of peripersonal space encoding as performing impact prediction," PLOS Computational Biology, Public Library of Science, vol. 18(9), pages 1-23, September.
  • Handle: RePEc:plo:pcbi00:1010464
    DOI: 10.1371/journal.pcbi.1010464
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010464
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010464&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.