Author
Listed:
- Evgeny A Podolskiy
- Mads Peter Heide-Jørgensen
Abstract
Detecting structures within the continuous diving behavior of marine animals is challenging, and no universal framework is available. We captured such diverse structures using chaos theory. By applying time-delay embedding to exceptionally long dive records (83 d) from the narwhal, we reconstructed the state-space portrait. Using measures of chaos, we detected a diurnal pattern and its seasonal modulation, classified data, and found how sea-ice appearance shifts time budgets. There is more near-surface rest but deeper dives at solar noon, and more intense diving during twilight and at night but to shallower depths (likely following squid); sea-ice appearance reduces rest. The introduced geometrical approach is simple to implement and potentially helpful for mapping and labeling long-term behavioral data, identifying differences between individual animals and species, and detecting perturbations.Author summary: While animal-borne ocean sensors continue to advance and collect more data, there is a lack of an adequate framework to analyze records of irregular behavior. For example, in the Arctic—there sea-ice is declining but is fundamental for the life cycle of many endemic animals—near-surface dive records are usually ignored, and continuous data are reduced to a maximum depth or similar. Here, we propose to transform our way of thinking about animal motion underwater by turning to a chaos approach and using a flowing geometrical shape to understand the full diversity of behaviors on an example of a satellite-tagged narwhal. Our method may help to assess the susceptibility of narwhal and other animals to sea-ice loss and climate warming.
Suggested Citation
Evgeny A Podolskiy & Mads Peter Heide-Jørgensen, 2022.
"Strange attractor of a narwhal (Monodon monoceros),"
PLOS Computational Biology, Public Library of Science, vol. 18(9), pages 1-16, September.
Handle:
RePEc:plo:pcbi00:1010432
DOI: 10.1371/journal.pcbi.1010432
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010432. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.