Author
Listed:
- Jianghong Shi
- Bryan Tripp
- Eric Shea-Brown
- Stefan Mihalas
- Michael A. Buice
Abstract
Convolutional neural networks trained on object recognition derive inspiration from the neural architecture of the visual system in mammals, and have been used as models of the feedforward computation performed in the primate ventral stream. In contrast to the deep hierarchical organization of primates, the visual system of the mouse has a shallower arrangement. Since mice and primates are both capable of visually guided behavior, this raises questions about the role of architecture in neural computation. In this work, we introduce a novel framework for building a biologically constrained convolutional neural network model of the mouse visual cortex. The architecture and structural parameters of the network are derived from experimental measurements, specifically the 100-micrometer resolution interareal connectome, the estimates of numbers of neurons in each area and cortical layer, and the statistics of connections between cortical layers. This network is constructed to support detailed task-optimized models of mouse visual cortex, with neural populations that can be compared to specific corresponding populations in the mouse brain. Using a well-studied image classification task as our working example, we demonstrate the computational capability of this mouse-sized network. Given its relatively small size, MouseNet achieves roughly 2/3rds the performance level on ImageNet as VGG16. In combination with the large scale Allen Brain Observatory Visual Coding dataset, we use representational similarity analysis to quantify the extent to which MouseNet recapitulates the neural representation in mouse visual cortex. Importantly, we provide evidence that optimizing for task performance does not improve similarity to the corresponding biological system beyond a certain point. We demonstrate that the distributions of some physiological quantities are closer to the observed distributions in the mouse brain after task training. We encourage the use of the MouseNet architecture by making the code freely available.Author summary: Task-driven deep neural networks have shown great potential in predicting functional responses of biological neurons. Nevertheless, they are not precise biological analogues, raising questions about how they should be interpreted. Here, we build new deep neural network models of the mouse visual cortex (MouseNet) that are biologically constrained in detail, not only in terms of the basic structure of their connectivity, but also in terms of the count and hence density of neurons within each area, and the spatial extent of their projections. Equipped with the MouseNet model, we can address key questions about mesoscale brain architecture and its role in task learning and performance. We ask, and provide a first set of answers, to: What is the performance of a mouse brain-sized—and mouse brain-structured—model on benchmark image classification tasks? How does the training of a network on this task affect the functional properties of specified layers within the biologically constrained architecture—both overall, and in comparison with recorded function of mouse neurons? We anticipate much future work on allied questions, and the development of more sophisticated models in both mouse and other species, based on the freely available MouseNet model and code which we develop and provide here.
Suggested Citation
Jianghong Shi & Bryan Tripp & Eric Shea-Brown & Stefan Mihalas & Michael A. Buice, 2022.
"MouseNet: A biologically constrained convolutional neural network model for the mouse visual cortex,"
PLOS Computational Biology, Public Library of Science, vol. 18(9), pages 1-30, September.
Handle:
RePEc:plo:pcbi00:1010427
DOI: 10.1371/journal.pcbi.1010427
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010427. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.