IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010404.html
   My bibliography  Save this article

iPiDA-LTR: Identifying piwi-interacting RNA-disease associations based on Learning to Rank

Author

Listed:
  • Wenxiang Zhang
  • Jialu Hou
  • Bin Liu

Abstract

Piwi-interacting RNAs (piRNAs) are regarded as drug targets and biomarkers for the diagnosis and therapy of diseases. However, biological experiments cost substantial time and resources, and the existing computational methods only focus on identifying missing associations between known piRNAs and diseases. With the fast development of biological experiments, more and more piRNAs are detected. Therefore, the identification of piRNA-disease associations of newly detected piRNAs has significant theoretical value and practical significance on pathogenesis of diseases. In this study, the iPiDA-LTR predictor is proposed to identify associations between piRNAs and diseases based on Learning to Rank. The iPiDA-LTR predictor not only identifies the missing associations between known piRNAs and diseases, but also detects diseases associated with newly detected piRNAs. Experimental results demonstrate that iPiDA-LTR effectively predicts piRNA-disease associations outperforming the other related methods.Author summary: Accumulating evidences have indicated that dysfunction and abnormal expression of piRNAs are closely associated with the emergence and development of diseases. Currently, identifying piRNA-disease associations mainly focuses on biological experimental methods and computational methods. However, biological experimental methods take substantial time and resources. Computational methods mainly focused on identifying diseases associated known piRNAs. With the development of biological technology, more and more newly detected piRNAs were detected. Therefore, identifying diseases associated with newly detected piRNAs is more important compared with identifying diseases associated with known piRNAs. Information retrieval (IR)’s goal is to rank documents based on the relevance to certain topics. This task is particularly similar with identification of piRNA-disease associations. Specifically, ranking documents related to previous topics corresponds to identify diseases associated with known piRNAs, and ranking documents related to novel topics is similar to identify diseases associated with newly detected piRNAs. Therefore, we propose a new predictor called iPiDA-LTR to predict associations between piRNAs and diseases based on information retrieval technology. Experimental results indicated that iPiDA-LTR is promising in identifying diseases associated with known piRNAs and newly detected piRNAs.

Suggested Citation

  • Wenxiang Zhang & Jialu Hou & Bin Liu, 2022. "iPiDA-LTR: Identifying piwi-interacting RNA-disease associations based on Learning to Rank," PLOS Computational Biology, Public Library of Science, vol. 18(8), pages 1-17, August.
  • Handle: RePEc:plo:pcbi00:1010404
    DOI: 10.1371/journal.pcbi.1010404
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010404
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010404&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010404?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010404. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.