IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010394.html
   My bibliography  Save this article

TreeKnit: Inferring ancestral reassortment graphs of influenza viruses

Author

Listed:
  • Pierre Barrat-Charlaix
  • Timothy G Vaughan
  • Richard A Neher

Abstract

When two influenza viruses co-infect the same cell, they can exchange genome segments in a process known as reassortment. Reassortment is an important source of genetic diversity and is known to have been involved in the emergence of most pandemic influenza strains. However, because of the difficulty in identifying reassortment events from viral sequence data, little is known about their role in the evolution of the seasonal influenza viruses. Here we introduce TreeKnit, a method that infers ancestral reassortment graphs (ARG) from two segment trees. It is based on topological differences between trees, and proceeds in a greedy fashion by finding regions that are compatible in the two trees. Using simulated genealogies with reassortments, we show that TreeKnit performs well in a wide range of settings and that it is as accurate as a more principled bayesian method, while being orders of magnitude faster. Finally, we show that it is possible to use the inferred ARG to better resolve segment trees and to construct more informative visualizations of reassortments.Author summary: Influenza viruses evolve quickly and escape immune defenses which requires frequent update of vaccines. Understanding this evolution is key to an effective public health response. The genome of influenza viruses is made up of 8 pieces called segments, each coding for different viral proteins. Within each segment, evolution is an asexual process in which genetic diversity is generated by mutations. But influenza also diversifies through reassortment which can occur when two different viruses infect the same cell: offsprings can then contain a combination of segments from both viruses. Reassortment is akin to sexual reproduction and can generate viruses that combine segments from diverged viral lineages. Reassortment is a crucial component of viral evolution, but it is challenging to reconstruct where reassortments happened and which segments share history. Here, we develop a method called TreeKnit to detect reassortment events. TreeKnit is based on genealogical trees of single segments that can be reconstructed using standard bioinformatics tools. Inconsistencies between these trees are then used as signs of reassortment. We show that TreeKnit is as accurate as other recent methods, but runs much faster. Our method will facilitate the study of reassortment and its consequences for influenza evolution.

Suggested Citation

  • Pierre Barrat-Charlaix & Timothy G Vaughan & Richard A Neher, 2022. "TreeKnit: Inferring ancestral reassortment graphs of influenza viruses," PLOS Computational Biology, Public Library of Science, vol. 18(8), pages 1-19, August.
  • Handle: RePEc:plo:pcbi00:1010394
    DOI: 10.1371/journal.pcbi.1010394
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010394
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010394&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010394?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010394. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.