Author
Listed:
- Anni S Halkola
- Kaisa Joki
- Tuomas Mirtti
- Marko M Mäkelä
- Tero Aittokallio
- Teemu D Laajala
Abstract
In many real-world applications, such as those based on electronic health records, prognostic prediction of patient survival is based on heterogeneous sets of clinical laboratory measurements. To address the trade-off between the predictive accuracy of a prognostic model and the costs related to its clinical implementation, we propose an optimized L0-pseudonorm approach to learn sparse solutions in multivariable regression. The model sparsity is maintained by restricting the number of nonzero coefficients in the model with a cardinality constraint, which makes the optimization problem NP-hard. In addition, we generalize the cardinality constraint for grouped feature selection, which makes it possible to identify key sets of predictors that may be measured together in a kit in clinical practice. We demonstrate the operation of our cardinality constraint-based feature subset selection method, named OSCAR, in the context of prognostic prediction of prostate cancer patients, where it enables one to determine the key explanatory predictors at different levels of model sparsity. We further explore how the model sparsity affects the model accuracy and implementation cost. Lastly, we demonstrate generalization of the presented methodology to high-dimensional transcriptomics data.Author summary: Feature subset selection has become a crucial part of building biomedical models, due to the abundance of available predictors in many applications, yet there remains an uncertainty of their importance and generalization ability. Regularized regression methods have become popular approaches to tackle this challenge by balancing the model goodness-of-fit against the increasing complexity of the model in terms of coefficients that deviate from zero. Regularization norms are pivotal in formulating the model complexity, and currently L1-norm (LASSO), L2-norm (Ridge Regression) and their hybrid (Elastic Net) dominate the field. In this paper, we present a novel methodology that is based on the L0-pseudonorm, also known as the best subset selection, which has largely gone overlooked due to its challenging discrete nature. Our methodology makes use of a continuous transformation of the discrete optimization problem, and provides effective solvers implemented in a user friendly R software package. We exemplify the use of oscar-package in the context of prostate cancer prognostic prediction using both real-world hospital registry and clinical cohort data. By benchmarking the methodology against existing regularization methods, we illustrate the advantages of the L0-pseudonorm for better clinical applicability, selection of grouped features, and demonstrate its applicability in high-dimensional transcriptomics datasets.
Suggested Citation
Anni S Halkola & Kaisa Joki & Tuomas Mirtti & Marko M Mäkelä & Tero Aittokallio & Teemu D Laajala, 2023.
"OSCAR: Optimal subset cardinality regression using the L0-pseudonorm with applications to prognostic modelling of prostate cancer,"
PLOS Computational Biology, Public Library of Science, vol. 19(3), pages 1-31, March.
Handle:
RePEc:plo:pcbi00:1010333
DOI: 10.1371/journal.pcbi.1010333
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010333. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.