IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010284.html
   My bibliography  Save this article

The accuracy of absolute differential abundance analysis from relative count data

Author

Listed:
  • Kimberly E Roche
  • Sayan Mukherjee

Abstract

Concerns have been raised about the use of relative abundance data derived from next generation sequencing as a proxy for absolute abundances. For example, in the differential abundance setting, compositional effects in relative abundance data may give rise to spurious differences (false positives) when considered from the absolute perspective. In practice however, relative abundances are often transformed by renormalization strategies intended to compensate for these effects and the scope of the practical problem remains unclear. We used simulated data to explore the consistency of differential abundance calling on renormalized relative abundances versus absolute abundances and find that, while overall consistency is high, with a median sensitivity (true positive rates) of 0.91 and specificity (1—false positive rates) of 0.89, consistency can be much lower where there is widespread change in the abundance of features across conditions. We confirm these findings on a large number of real data sets drawn from 16S metabarcoding, expression array, bulk RNA-seq, and single-cell RNA-seq experiments, where data sets with the greatest change between experimental conditions are also those with the highest false positive rates. Finally, we evaluate the predictive utility of summary features of relative abundance data themselves. Estimates of sparsity and the prevalence of feature-level change in relative abundance data give reasonable predictions of discrepancy in differential abundance calling in simulated data and can provide useful bounds for worst-case outcomes in real data.Author summary: Molecular sequence counting is a near-ubituiqous method for taking “snapshots” of the state of biological systems at the molecular level and is applied to problems as diverse as profiling gene expression and characterizing bacterial community composition. However, concerns exist about the interpretation of these data, given they are relative counts. In particular some feature-level differences between samples may be technical, not biological, stemming from compositional effects. Here, we quantify the accuracy of estimates of sample-sample differences made from relative versus “absolute” molecular count data, using a comprehensive simulation strategy and published experimental data. We find the accuracy of difference estimation is high in at least 50% of simulated and real data sets but that low accuracy outcomes are far from rare. Further, we observe similar numbers of these low accuracy cases when using any of several popular methods for estimating differences in biological count data. Our results support the use of complementary reference measures of absolute abundance (like RNA spike-ins) for normalizing next-generation sequencing data. We briefly validate the use of these reference quantities and of stringent effect size thresholds as strategies for mitigating interpretational problems with relative count data.

Suggested Citation

  • Kimberly E Roche & Sayan Mukherjee, 2022. "The accuracy of absolute differential abundance analysis from relative count data," PLOS Computational Biology, Public Library of Science, vol. 18(7), pages 1-25, July.
  • Handle: RePEc:plo:pcbi00:1010284
    DOI: 10.1371/journal.pcbi.1010284
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010284
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010284&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010284?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Rodoniki Athanasiadou & Benjamin Neymotin & Nathan Brandt & Wei Wang & Lionel Christiaen & David Gresham & Daniel Tranchina, 2019. "A complete statistical model for calibration of RNA-seq counts using external spike-ins and maximum likelihood theory," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-26, March.
    2. Beate Vieth & Swati Parekh & Christoph Ziegenhain & Wolfgang Enard & Ines Hellmann, 2019. "A systematic evaluation of single cell RNA-seq analysis pipelines," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hyeon-Jin Kim & Greg Booth & Lauren Saunders & Sanjay Srivatsan & José L. McFaline-Figueroa & Cole Trapnell, 2022. "Nuclear oligo hashing improves differential analysis of single-cell RNA-seq," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    2. Yue Cao & Pengyi Yang & Jean Yee Hwa Yang, 2021. "A benchmark study of simulation methods for single-cell RNA sequencing data," Nature Communications, Nature, vol. 12(1), pages 1-12, December.
    3. Enrique Goñi & Aina Maria Mas & Jovanna Gonzalez & Amaya Abad & Marta Santisteban & Puri Fortes & Maite Huarte & Mikel Hernaez, 2024. "Uncovering functional lncRNAs by scRNA-seq with ELATUS," Nature Communications, Nature, vol. 15(1), pages 1-17, December.
    4. Jinge Yu & Qiuyu Wu & Xiangyu Luo, 2023. "Bayesian Joint Modeling of Single-Cell Expression Data and Bulk Spatial Transcriptomic Data," Statistics in Biosciences, Springer;International Chinese Statistical Association, vol. 15(3), pages 719-733, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010284. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.