Author
Listed:
- Rafiul Amin
- Rose T Faghih
Abstract
Electrodermal activities (EDA) are any electrical phxenomena observed on the skin. Skin conductance (SC), a measure of EDA, shows fluctuations due to autonomic nervous system (ANS) activation induced sweat secretion. Since it can capture psychophysiological information, there is a significant rise in the research work for tracking mental and physiological health with EDA. However, the current state-of-the-art lacks a physiologically motivated approach for real-time inference of ANS activation from EDA. Therefore, firstly, we propose a comprehensive model for the SC dynamics. The proposed model is a 3D state-space representation of the direct secretion of sweat via pore opening and diffusion followed by corresponding evaporation and reabsorption. As the input to the model, we consider a sparse signal representing the ANS activation that causes the sweat glands to produce sweat. Secondly, we derive a scalable fixed-interval smoother-based sparse recovery approach utilizing the proposed comprehensive model to infer the ANS activation enabling edge computation. We incorporate a generalized-cross-validation to tune the sparsity level. Finally, we propose an Expectation-Maximization based deconvolution approach for learning the model parameters during the ANS activation inference. For evaluation, we utilize a dataset with 26 participants, and the results show that our comprehensive state-space model can successfully describe the SC variations with high scalability, showing the feasibility of real-time applications. Results validate that our physiology-motivated state-space model can comprehensively explain the EDA and outperforms all previous approaches. Our findings introduce a whole new perspective and have a broader impact on the standard practices of EDA analysis.Author summary: The current state-of-the-art lacks physiology-motivated models for electrodermal activities (EDA) that have the power to comprehensively describe the variations in skin conductance (SC)–a measure of EDA. In this study, we propose a physiology-motivated state-space model to address previous challenges. On the other hand, there is also an absence of a scalable autonomic nervous system (ANS) activation inference method that simultaneously solve for the physiological system parameters. Furthermore, we develop a scalable ANS activation inference approach based on the proposed model with a goal for real-time edge computation. We utilize a dataset with 26 participants to validate the new model and the scalable method. Results demonstrate that our physiology-motivated state-space model can comprehensively explain the EDA. Our findings introduce a whole new perspective and have a broader impact on standard practices of EDA analysis.
Suggested Citation
Rafiul Amin & Rose T Faghih, 2022.
"Physiological characterization of electrodermal activity enables scalable near real-time autonomic nervous system activation inference,"
PLOS Computational Biology, Public Library of Science, vol. 18(7), pages 1-28, July.
Handle:
RePEc:plo:pcbi00:1010275
DOI: 10.1371/journal.pcbi.1010275
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010275. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.