IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1010266.html
   My bibliography  Save this article

Data-based stochastic modeling reveals sources of activity bursts in single-cell TGF-β signaling

Author

Listed:
  • Niklas Kolbe
  • Lorenz Hexemer
  • Lukas-Malte Bammert
  • Alexander Loewer
  • Mária Lukáčová-Medvid’ová
  • Stefan Legewie

Abstract

Cells sense their surrounding by employing intracellular signaling pathways that transmit hormonal signals from the cell membrane to the nucleus. TGF-β/SMAD signaling encodes various cell fates, controls tissue homeostasis and is deregulated in diseases such as cancer. The pathway shows strong heterogeneity at the single-cell level, but quantitative insights into mechanisms underlying fluctuations at various time scales are still missing, partly due to inefficiency in the calibration of stochastic models that mechanistically describe signaling processes. In this work we analyze single-cell TGF-β/SMAD signaling and show that it exhibits temporal stochastic bursts which are dose-dependent and whose number and magnitude correlate with cell migration. We propose a stochastic modeling approach to mechanistically describe these pathway fluctuations with high computational efficiency. Employing high-order numerical integration and fitting to burst statistics we enable efficient quantitative parameter estimation and discriminate models that assume noise in different reactions at the receptor level. This modeling approach suggests that stochasticity in the internalization of TGF-β receptors into endosomes plays a key role in the observed temporal bursting. Further, the model predicts the single-cell dynamics of TGF-β/SMAD signaling in untested conditions, e.g., successfully reflects memory effects of signaling noise and cellular sensitivity towards repeated stimulation. Taken together, our computational framework based on burst analysis, noise modeling and path computation scheme is a suitable tool for the data-based modeling of complex signaling pathways, capable of identifying the source of temporal noise.Author summary: Fluctuations in molecular networks give rise to heterogeneity in cellular behavior and therefore promote the diversification of tissues. For a better understanding of cellular decision making, it is important to identify sources of molecular fluctuations and to quantitatively describe them by predictive mathematical models. In this work, we focused on temporal fluctuations of the TGF-β signaling pathway that is important for controlling cell division and migration.

Suggested Citation

  • Niklas Kolbe & Lorenz Hexemer & Lukas-Malte Bammert & Alexander Loewer & Mária Lukáčová-Medvid’ová & Stefan Legewie, 2022. "Data-based stochastic modeling reveals sources of activity bursts in single-cell TGF-β signaling," PLOS Computational Biology, Public Library of Science, vol. 18(6), pages 1-29, June.
  • Handle: RePEc:plo:pcbi00:1010266
    DOI: 10.1371/journal.pcbi.1010266
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1010266
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1010266&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1010266?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Long Cai & Chiraj K. Dalal & Michael B. Elowitz, 2008. "Frequency-modulated nuclear localization bursts coordinate gene regulation," Nature, Nature, vol. 455(7212), pages 485-490, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Andreas Doncic & Umut Eser & Oguzhan Atay & Jan M Skotheim, 2013. "An Algorithm to Automate Yeast Segmentation and Tracking," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-11, March.
    2. Joachim Almquist & Loubna Bendrioua & Caroline Beck Adiels & Mattias Goksör & Stefan Hohmann & Mats Jirstrand, 2015. "A Nonlinear Mixed Effects Approach for Modeling the Cell-To-Cell Variability of Mig1 Dynamics in Yeast," PLOS ONE, Public Library of Science, vol. 10(4), pages 1-32, April.
    3. Ziya Kalay & Takahiro K Fujiwara & Akihiro Kusumi, 2012. "Confining Domains Lead to Reaction Bursts: Reaction Kinetics in the Plasma Membrane," PLOS ONE, Public Library of Science, vol. 7(3), pages 1-8, March.
    4. Vera Bettenworth & Simon Vliet & Bartosz Turkowyd & Annika Bamberger & Heiko Wendt & Matthew McIntosh & Wieland Steinchen & Ulrike Endesfelder & Anke Becker, 2022. "Frequency modulation of a bacterial quorum sensing response," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Gabriele Micali & Gerardo Aquino & David M Richards & Robert G Endres, 2015. "Accurate Encoding and Decoding by Single Cells: Amplitude Versus Frequency Modulation," PLOS Computational Biology, Public Library of Science, vol. 11(6), pages 1-21, June.
    6. repec:plo:pone00:0014624 is not listed on IDEAS
    7. Jing Kang & Bing Xu & Ye Yao & Wei Lin & Conor Hennessy & Peter Fraser & Jianfeng Feng, 2011. "A Dynamical Model Reveals Gene Co-Localizations in Nucleus," PLOS Computational Biology, Public Library of Science, vol. 7(7), pages 1-16, July.
    8. C Caranica & A Al-Omari & Z Deng & J Griffith & R Nilsen & L Mao & J Arnold & H-B Schüttler, 2018. "Ensemble methods for stochastic networks with special reference to the biological clock of Neurospora crassa," PLOS ONE, Public Library of Science, vol. 13(5), pages 1-28, May.
    9. Giorgos Minas & Dan J Woodcock & Louise Ashall & Claire V Harper & Michael R H White & David A Rand, 2020. "Multiplexing information flow through dynamic signalling systems," PLOS Computational Biology, Public Library of Science, vol. 16(8), pages 1-18, August.
    10. Marc Weber & Javier Buceta, 2013. "Stochastic Stabilization of Phenotypic States: The Genetic Bistable Switch as a Case Study," PLOS ONE, Public Library of Science, vol. 8(9), pages 1-8, September.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010266. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.