A systematic evaluation of deep learning methods for the prediction of drug synergy in cancer
Author
Abstract
Suggested Citation
DOI: 10.1371/journal.pcbi.1010200
Download full text from publisher
References listed on IDEAS
- K. Yu & B. Chen & D. Aran & J. Charalel & C. Yau & D. M. Wolf & L. J. ‘t Veer & A. J. Butte & T. Goldstein & M. Sirota, 2019. "Comprehensive transcriptomic analysis of cell lines as models of primary tumors across 22 tumor types," Nature Communications, Nature, vol. 10(1), pages 1-11, December.
- Jiaqi Li & Hongyan Xu & Richard A McIndoe, 2022. "A novel network based linear model for prioritization of synergistic drug combinations," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-22, April.
- Michael P. Menden & Dennis Wang & Mike J. Mason & Bence Szalai & Krishna C. Bulusu & Yuanfang Guan & Thomas Yu & Jaewoo Kang & Minji Jeon & Russ Wolfinger & Tin Nguyen & Mikhail Zaslavskiy & In Sock J, 2019. "Community assessment to advance computational prediction of cancer drug combinations in a pharmacogenomic screen," Nature Communications, Nature, vol. 10(1), pages 1-17, December.
- Mohieddin Jafari & Mehdi Mirzaie & Jie Bao & Farnaz Barneh & Shuyu Zheng & Johanna Eriksson & Caroline A. Heckman & Jing Tang, 2022. "Bipartite network models to design combination therapies in acute myeloid leukaemia," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Yuchen Bai & Carolin Gotz & Ginevra Chincarini & Zixuan Zhao & Clare Slaney & Jarryd Boath & Luc Furic & Christopher Angel & Stephen M. Jane & Wayne A. Phillips & Steven A. Stacker & Camile S. Farah &, 2023. "YBX1 integration of oncogenic PI3K/mTOR signalling regulates the fitness of malignant epithelial cells," Nature Communications, Nature, vol. 14(1), pages 1-16, December.
- Peyman Choopanian & Jaan-Olle Andressoo & Mehdi Mirzaie, 2025. "A fast approach for structural and evolutionary analysis based on energetic profile protein comparison," Nature Communications, Nature, vol. 16(1), pages 1-16, December.
- L. Mathur & B. Szalai & N. H. Du & R. Utharala & M. Ballinger & J. J. M. Landry & M. Ryckelynck & V. Benes & J. Saez-Rodriguez & C. A. Merten, 2022. "Combi-seq for multiplexed transcriptome-based profiling of drug combinations using deterministic barcoding in single-cell droplets," Nature Communications, Nature, vol. 13(1), pages 1-15, December.
- Yeo-Jun Yoon & Donghyun Kim & Kwon Yong Tak & Seungyeon Hwang & Jisun Kim & Nam Suk Sim & Jae-Min Cho & Dojin Choi & Youngmi Ji & Junho K. Hur & Hyunki Kim & Jong-Eun Park & Jae-Yol Lim, 2022. "Salivary gland organoid culture maintains distinct glandular properties of murine and human major salivary glands," Nature Communications, Nature, vol. 13(1), pages 1-16, December.
- Boshu Ouyang & Caihua Shan & Shun Shen & Xinnan Dai & Qingwang Chen & Xiaomin Su & Yongbin Cao & Xifeng Qin & Ying He & Siyu Wang & Ruizhe Xu & Ruining Hu & Leming Shi & Tun Lu & Wuli Yang & Shaojun P, 2024. "AI-powered omics-based drug pair discovery for pyroptosis therapy targeting triple-negative breast cancer," Nature Communications, Nature, vol. 15(1), pages 1-20, December.
- Nishanth Ulhas Nair & Patricia Greninger & Xiaohu Zhang & Adam A. Friedman & Arnaud Amzallag & Eliane Cortez & Avinash Das Sahu & Joo Sang Lee & Anahita Dastur & Regina K. Egan & Ellen Murchie & Miche, 2023. "A landscape of response to drug combinations in non-small cell lung cancer," Nature Communications, Nature, vol. 14(1), pages 1-19, December.
- Sean M. Gross & Farnaz Mohammadi & Crystal Sanchez-Aguila & Paulina J. Zhan & Tiera A. Liby & Mark A. Dane & Aaron S. Meyer & Laura M. Heiser, 2023. "Analysis and modeling of cancer drug responses using cell cycle phase-specific rate effects," Nature Communications, Nature, vol. 14(1), pages 1-12, December.
- Han Jin & Cheng Zhang & Martin Zwahlen & Kalle Feilitzen & Max Karlsson & Mengnan Shi & Meng Yuan & Xiya Song & Xiangyu Li & Hong Yang & Hasan Turkez & Linn Fagerberg & Mathias Uhlén & Adil Mardinoglu, 2023. "Systematic transcriptional analysis of human cell lines for gene expression landscape and tumor representation," Nature Communications, Nature, vol. 14(1), pages 1-15, December.
- Jiaqi Li & Hongyan Xu & Richard A McIndoe, 2022. "A novel network based linear model for prioritization of synergistic drug combinations," PLOS ONE, Public Library of Science, vol. 17(4), pages 1-22, April.
- Hanrui Zhang & Julian Kreis & Sven-Eric Schelhorn & Heike Dahmen & Thomas Grombacher & Michael Zühlsdorf & Frank T. Zenke & Yuanfang Guan, 2023. "Mapping combinatorial drug effects to DNA damage response kinase inhibitors," Nature Communications, Nature, vol. 14(1), pages 1-8, December.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010200. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.