Author
Listed:
- Wai Shing Tang
- Gabriel Monteiro da Silva
- Henry Kirveslahti
- Erin Skeens
- Bibo Feng
- Timothy Sudijono
- Kevin K Yang
- Sayan Mukherjee
- Brenda Rubenstein
- Lorin Crawford
Abstract
Identifying structural differences among proteins can be a non-trivial task. When contrasting ensembles of protein structures obtained from molecular dynamics simulations, biologically-relevant features can be easily overshadowed by spurious fluctuations. Here, we present SINATRA Pro, a computational pipeline designed to robustly identify topological differences between two sets of protein structures. Algorithmically, SINATRA Pro works by first taking in the 3D atomic coordinates for each protein snapshot and summarizing them according to their underlying topology. Statistically significant topological features are then projected back onto a user-selected representative protein structure, thus facilitating the visual identification of biophysical signatures of different protein ensembles. We assess the ability of SINATRA Pro to detect minute conformational changes in five independent protein systems of varying complexities. In all test cases, SINATRA Pro identifies known structural features that have been validated by previous experimental and computational studies, as well as novel features that are also likely to be biologically-relevant according to the literature. These results highlight SINATRA Pro as a promising method for facilitating the non-trivial task of pattern recognition in trajectories resulting from molecular dynamics simulations, with substantially increased resolution.Author summary: Structural features of proteins often serve as signatures of their biological function and molecular binding activity. Elucidating these structural features is essential for a full understanding of underlying biophysical mechanisms. While there are existing methods aimed at identifying structural differences between protein variants, such methods do not have the capability to jointly infer both geometric and dynamic changes, simultaneously. In this paper, we propose SINATRA Pro, a computational framework for extracting key structural features between two sets of proteins. SINATRA Pro robustly outperforms standard techniques in pinpointing the physical locations of both static and dynamic signatures across various types of protein ensembles, and it does so with improved resolution.
Suggested Citation
Wai Shing Tang & Gabriel Monteiro da Silva & Henry Kirveslahti & Erin Skeens & Bibo Feng & Timothy Sudijono & Kevin K Yang & Sayan Mukherjee & Brenda Rubenstein & Lorin Crawford, 2022.
"A topological data analytic approach for discovering biophysical signatures in protein dynamics,"
PLOS Computational Biology, Public Library of Science, vol. 18(5), pages 1-42, May.
Handle:
RePEc:plo:pcbi00:1010045
DOI: 10.1371/journal.pcbi.1010045
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010045. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.