Author
Listed:
- Alice J Sommer
- Annette Peters
- Martina Rommel
- Josef Cyrys
- Harald Grallert
- Dirk Haller
- Christian L Müller
- Marie-Abèle C Bind
Abstract
Statistical analysis of microbial genomic data within epidemiological cohort studies holds the promise to assess the influence of environmental exposures on both the host and the host-associated microbiome. However, the observational character of prospective cohort data and the intricate characteristics of microbiome data make it challenging to discover causal associations between environment and microbiome. Here, we introduce a causal inference framework based on the Rubin Causal Model that can help scientists to investigate such environment-host microbiome relationships, to capitalize on existing, possibly powerful, test statistics, and test plausible sharp null hypotheses. Using data from the German KORA cohort study, we illustrate our framework by designing two hypothetical randomized experiments with interventions of (i) air pollution reduction and (ii) smoking prevention. We study the effects of these interventions on the human gut microbiome by testing shifts in microbial diversity, changes in individual microbial abundances, and microbial network wiring between groups of matched subjects via randomization-based inference. In the smoking prevention scenario, we identify a small interconnected group of taxa worth further scrutiny, including Christensenellaceae and Ruminococcaceae genera, that have been previously associated with blood metabolite changes. These findings demonstrate that our framework may uncover potentially causal links between environmental exposure and the gut microbiome from observational data. We anticipate the present statistical framework to be a good starting point for further discoveries on the role of the gut microbiome in environmental health.Author summary: Environmental influences on the human gut microbiome are still to be discovered or better understood. In this paper, we contribute to the field of microbiome research and environmental epidemiology by suggesting a stage-based causal inference framework relying on the foundations of the Rubin Causal Model. A particularity of the framework is the use of randomization-based inference, which we value to be a necessary exploratory inference method when tackling untapped research questions. To illustrate the framework, we explore the effects of two inhaled environmental exposures previously hypothesized to be linked with gastrointestinal diseases and the gut microbiome: air pollution exposure and cigarette smoking.
Suggested Citation
Alice J Sommer & Annette Peters & Martina Rommel & Josef Cyrys & Harald Grallert & Dirk Haller & Christian L Müller & Marie-Abèle C Bind, 2022.
"A randomization-based causal inference framework for uncovering environmental exposure effects on human gut microbiota,"
PLOS Computational Biology, Public Library of Science, vol. 18(5), pages 1-30, May.
Handle:
RePEc:plo:pcbi00:1010044
DOI: 10.1371/journal.pcbi.1010044
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010044. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.