Author
Listed:
- Rick Evertz
- Damien G Hicks
- David T J Liley
Abstract
The dynamical and physiological basis of alpha band activity and 1/fβ noise in the EEG are the subject of continued speculation. Here we conjecture, on the basis of empirical data analysis, that both of these features may be economically accounted for through a single process if the resting EEG is conceived of being the sum of multiple stochastically perturbed alpha band damped linear oscillators with a distribution of dampings (relaxation rates). The modulation of alpha-band and 1/fβ noise activity by changes in damping is explored in eyes closed (EC) and eyes open (EO) resting state EEG. We aim to estimate the distribution of dampings by solving an inverse problem applied to EEG power spectra. The characteristics of the damping distribution are examined across subjects, sensors and recording condition (EC/EO). We find that there are robust changes in the damping distribution between EC and EO recording conditions across participants. The estimated damping distributions are found to be predominantly bimodal, with the number and position of the modes related to the sharpness of the alpha resonance and the scaling (β) of the power spectrum (1/fβ). The results suggest that there exists an intimate relationship between resting state alpha activity and 1/fβ noise with changes in both governed by changes to the damping of the underlying alpha oscillatory processes. In particular, alpha-blocking is observed to be the result of the most weakly damped distribution mode becoming more heavily damped. The results suggest a novel way of characterizing resting EEG power spectra and provides new insight into the central role that damped alpha-band activity may play in characterising the spatio-temporal features of resting state EEG.Author summary: The resting human electroencephalogram (EEG) exhibits two dominant spectral features: the alpha rhythm (8–13 Hz) and its associated attenuation between eyes-closed and eyes-open resting state (alpha blocking), and the 1/fβ scaling of the power spectrum. While these phenomena are well studied a thorough understanding of their respective generative processes remains elusive. By employing a theoretical approach that follows from neural population models of EEG we demonstrate that it is possible to economically account for both of these phenomena using a singular mechanistic framework: resting EEG is assumed to arise from the summed activity of multiple uncorrelated, stochastically driven, damped alpha band linear oscillatory processes having a distribution of relaxation rates or dampings. By numerically estimating these damping distributions from eyes-closed and eyes-open EEG data, in a total of 136 participants, it is found that such damping distributions are predominantly bimodal in shape. The most weakly damped mode is found to account for alpha band power, with alpha blocking being driven by an increase in the damping of this weakly damped mode, whereas the second, and more heavily damped mode, is able to explain 1/fβ scaling present in the resting state EEG spectra.
Suggested Citation
Rick Evertz & Damien G Hicks & David T J Liley, 2022.
"Alpha blocking and 1/fβ spectral scaling in resting EEG can be accounted for by a sum of damped alpha band oscillatory processes,"
PLOS Computational Biology, Public Library of Science, vol. 18(4), pages 1-30, April.
Handle:
RePEc:plo:pcbi00:1010012
DOI: 10.1371/journal.pcbi.1010012
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1010012. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.