IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009880.html
   My bibliography  Save this article

Deep mendelian randomization: Investigating the causal knowledge of genomic deep learning models

Author

Listed:
  • Stephen Malina
  • Daniel Cizin
  • David A Knowles

Abstract

Multi-task deep learning (DL) models can accurately predict diverse genomic marks from sequence, but whether these models learn the causal relationships between genomic marks is unknown. Here, we describe Deep Mendelian Randomization (DeepMR), a method for estimating causal relationships between genomic marks learned by genomic DL models. By combining Mendelian randomization with in silico mutagenesis, DeepMR obtains local (locus specific) and global estimates of (an assumed) linear causal relationship between marks. In a simulation designed to test recovery of pairwise causal relations between transcription factors (TFs), DeepMR gives accurate and unbiased estimates of the ‘true’ global causal effect, but its coverage decays in the presence of sequence-dependent confounding. We then apply DeepMR to examine the global relationships learned by a state-of-the-art DL model, BPNet, between TFs involved in reprogramming. DeepMR’s causal effect estimates validate previously hypothesized relationships between TFs and suggest new relationships for future investigation.Author summary: Chromatin marks such as transcription factor (TF) binding, accessibility, and histone modifications play a critical role in controlling cell behavior and identity. In recent years, multi-task deep learning (DL) models have achieved remarkable success at predicting these and other chromatin marks. However, it is unclear to what extent these models learn meaningful mechanistic, even causal, relationships between these variables. Our work aims to fill this gap by combining in silico mutagenesis, deep learning uncertainty estimation and causal inference (specifically Mendelian randomization, MR), into a framework we call DeepMR. We describe DeepMR, apply it to a simulation intended to test its ability to recover causal relationships between features from a learned model, and then use it to examine the relationships learned by a state-of-the-art DL model, BPNet. Our results suggest that DeepMR can estimate causal relationships under its stated assumptions and provide further evidence for previously hypothesized relationships between TFs identified by BPNet.

Suggested Citation

  • Stephen Malina & Daniel Cizin & David A Knowles, 2022. "Deep mendelian randomization: Investigating the causal knowledge of genomic deep learning models," PLOS Computational Biology, Public Library of Science, vol. 18(10), pages 1-14, October.
  • Handle: RePEc:plo:pcbi00:1009880
    DOI: 10.1371/journal.pcbi.1009880
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009880
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009880&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009880?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009880. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.