Author
Listed:
- Noémi Éltető
- Dezső Nemeth
- Karolina Janacsek
- Peter Dayan
Abstract
Humans can implicitly learn complex perceptuo-motor skills over the course of large numbers of trials. This likely depends on our becoming better able to take advantage of ever richer and temporally deeper predictive relationships in the environment. Here, we offer a novel characterization of this process, fitting a non-parametric, hierarchical Bayesian sequence model to the reaction times of human participants’ responses over ten sessions, each comprising thousands of trials, in a serial reaction time task involving higher-order dependencies. The model, adapted from the domain of language, forgetfully updates trial-by-trial, and seamlessly combines predictive information from shorter and longer windows onto past events, weighing the windows proportionally to their predictive power. As the model implies a posterior over window depths, we were able to determine how, and how many, previous sequence elements influenced individual participants’ internal predictions, and how this changed with practice.Already in the first session, the model showed that participants had begun to rely on two previous elements (i.e., trigrams), thereby successfully adapting to the most prominent higher-order structure in the task. The extent to which local statistical fluctuations in trigram frequency influenced participants’ responses waned over subsequent sessions, as participants forgot the trigrams less and evidenced skilled performance. By the eighth session, a subset of participants shifted their prior further to consider a context deeper than two previous elements. Finally, participants showed resistance to interference and slow forgetting of the old sequence when it was changed in the final sessions. Model parameters for individual participants covaried appropriately with independent measures of working memory and error characteristics. In sum, the model offers the first principled account of the adaptive complexity and nuanced dynamics of humans’ internal sequence representations during long-term implicit skill learning.Author summary: A central function of the brain is to predict. One challenge of prediction is that both external events and our own actions can depend on a variably deep temporal context of previous events or actions. For instance, in a short motor routine, like opening a door, our actions only depend on a few previous ones (e.g., push the handle if the key was turned). In longer routines such as coffee making, our actions require a deeper context (e.g., place the moka pot on the hob if coffee is ground, the pot is filled and closed, and the hob is on). We adopted a model from the natural language processing literature that matches humans’ ability to learn variable-length relationships in sequences. This model explained the gradual emergence of more complex sequence knowledge and individual differences in an experiment where humans practiced a perceptual-motor sequence over 10 weekly sessions.
Suggested Citation
Noémi Éltető & Dezső Nemeth & Karolina Janacsek & Peter Dayan, 2022.
"Tracking human skill learning with a hierarchical Bayesian sequence model,"
PLOS Computational Biology, Public Library of Science, vol. 18(11), pages 1-28, November.
Handle:
RePEc:plo:pcbi00:1009866
DOI: 10.1371/journal.pcbi.1009866
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009866. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.