IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009625.html
   My bibliography  Save this article

Binding-induced functional-domain motions in the Argonaute characterized by adaptive advanced sampling

Author

Listed:
  • Danial Pourjafar-Dehkordi
  • Martin Zacharias

Abstract

Argonaute proteins in combination with short microRNA (miRNAs) can target mRNA molecules for translation inhibition or degradation and play a key role in many regulatory processes. The miRNAs act as guide RNAs that associate with Argonaute and the complementary mRNA target region. The complex formation results in activation of Argonaute and specific cleavage of the target mRNA. Both the binding and activation processes involve essential domain rearrangements of functional importance. For the Thermus Thermophilus Argonaute (TtAgo) system guide-bound (binary) and guide/target-bound (ternary) complexes are known but how the binding of guide and target mediate domain movements is still not understood. We have studied the Argonaute domain motion in apo and guide/target bound states using Molecular Dynamics simulations and a Hamiltonian replica exchange (H-REMD) method that employs a specific biasing potential to accelerate domain motions. The H-REMD technique indicates sampling of a much broader distribution of domain arrangements both in the apo as well as binary and ternary complexes compared to regular MD simulations. In the apo state domain arrangements corresponding to more compact (closed) states are mainly sampled which undergo an opening upon guide and guide/target binding. Whereas only limited overlap in domain geometry between apo and bound states was found, a larger similarity in the domain distribution is observed for the simulations of binary and ternary complexes. Comparative simulations on ternary complexes with 15 or 16 base pairs (bp) formed between guide and target strands (instead of 14) resulted in dissociation of the 3’-guide strand from the PAZ domain and domain rearrangement. This agrees with the experimental observation that guide-target pairing beyond 14 bps is required for activation and gives a mechanistic explanation for the experimentally observed activation process.Author summary: Post-transcriptional gene silencing is an important process to regulate protein synthesis in eukaryotes and prokaryotes. The Argonaute proteins as part of the RNA-induced-silencing-complex (RISC) form a central element of the process by silencing of a target messenger RNA (mRNA) via degradation or repression of translation. The Argonaute protein binds initially a short RNA that acts as a guide to promote binding of a complementary target mRNA. The complex formation can lead to activation of Argonaute and specific cleavage of the target mRNA. The whole process involves domain rearrangements that are not fully understood. We applied an advanced Molecular Dynamics sampling technique to specifically accelerate domain motions of the Thermus Thermophilus Argonaute (TtAgo) system in apo, guide bound and guide/target bound states. The simulations indicate only limited overlap of domain arrangements in apo and bound states and identified domain opening motions necessary for guide and target binding. The study also offers an explanation why a minimum of 15 or 16 base pairs between guide and target strands are necessary for Argonaute activation.

Suggested Citation

  • Danial Pourjafar-Dehkordi & Martin Zacharias, 2021. "Binding-induced functional-domain motions in the Argonaute characterized by adaptive advanced sampling," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-16, November.
  • Handle: RePEc:plo:pcbi00:1009625
    DOI: 10.1371/journal.pcbi.1009625
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009625
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009625&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009625?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Andrew Grimson & Mansi Srivastava & Bryony Fahey & Ben J. Woodcroft & H. Rosaria Chiang & Nicole King & Bernard M. Degnan & Daniel S. Rokhsar & David P. Bartel, 2008. "Early origins and evolution of microRNAs and Piwi-interacting RNAs in animals," Nature, Nature, vol. 455(7217), pages 1193-1197, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu H. Sun & Ruoqiao Huiyi Wang & Khai Du & Jiang Zhu & Jihong Zheng & Li Huitong Xie & Amanda A. Pereira & Chao Zhang & Emiliano P. Ricci & Xin Zhiguo Li, 2021. "Coupled protein synthesis and ribosome-guided piRNA processing on mRNAs," Nature Communications, Nature, vol. 12(1), pages 1-19, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.