IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009598.html
   My bibliography  Save this article

Differential methods for assessing sensitivity in biological models

Author

Listed:
  • Rachel Mester
  • Alfonso Landeros
  • Chris Rackauckas
  • Kenneth Lange

Abstract

Differential sensitivity analysis is indispensable in fitting parameters, understanding uncertainty, and forecasting the results of both thought and lab experiments. Although there are many methods currently available for performing differential sensitivity analysis of biological models, it can be difficult to determine which method is best suited for a particular model. In this paper, we explain a variety of differential sensitivity methods and assess their value in some typical biological models. First, we explain the mathematical basis for three numerical methods: adjoint sensitivity analysis, complex perturbation sensitivity analysis, and forward mode sensitivity analysis. We then carry out four instructive case studies. (a) The CARRGO model for tumor-immune interaction highlights the additional information that differential sensitivity analysis provides beyond traditional naive sensitivity methods, (b) the deterministic SIR model demonstrates the value of using second-order sensitivity in refining model predictions, (c) the stochastic SIR model shows how differential sensitivity can be attacked in stochastic modeling, and (d) a discrete birth-death-migration model illustrates how the complex perturbation method of differential sensitivity can be generalized to a broader range of biological models. Finally, we compare the speed, accuracy, and ease of use of these methods. We find that forward mode automatic differentiation has the quickest computational time, while the complex perturbation method is the simplest to implement and the most generalizable.Author summary: Over the past few decades, mathematical modeling has become an indispensable tool in the biologist’s toolbox. From deterministic to stochastic to statistical models, computational modeling is ubiquitous in almost every field of biology. Because model parameter estimates are often noisy or depend on poorly understood interactions, it is crucial to examine how both quantitative and qualitative predictions change as parameter estimates change, especially as the number of parameters increases. Sensitivity analysis is the process of understanding how a model’s behavior depends on parameter values. Sensitivity analysis simultaneously quantifies prediction certainty and clarifies the underlying biological mechanisms that drive computational models. While sensitivity analysis is universally recognized to be an important step in modeling, it is often unclear how to best leverage the available differential sensitivity methods. In this manuscript we explain and compare various differential sensitivity methods in the hope that best practices will be widely adopted. We stress the relative advantages of existing software and their limitations. We also present a new numerical technique for computing differential sensitivity.

Suggested Citation

  • Rachel Mester & Alfonso Landeros & Chris Rackauckas & Kenneth Lange, 2022. "Differential methods for assessing sensitivity in biological models," PLOS Computational Biology, Public Library of Science, vol. 18(6), pages 1-30, June.
  • Handle: RePEc:plo:pcbi00:1009598
    DOI: 10.1371/journal.pcbi.1009598
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009598
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009598&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009598?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Gabriele Lillacci & Mustafa Khammash, 2010. "Parameter Estimation and Model Selection in Computational Biology," PLOS Computational Biology, Public Library of Science, vol. 6(3), pages 1-17, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Alireza Yazdani & Lu Lu & Maziar Raissi & George Em Karniadakis, 2020. "Systems biology informed deep learning for inferring parameters and hidden dynamics," PLOS Computational Biology, Public Library of Science, vol. 16(11), pages 1-19, November.
    2. Joseph D Taylor & Samuel Winnall & Alain Nogaret, 2020. "Estimation of neuron parameters from imperfect observations," PLOS Computational Biology, Public Library of Science, vol. 16(7), pages 1-22, July.
    3. Dimitrios V Vavoulis & Volko A Straub & John A D Aston & Jianfeng Feng, 2012. "A Self-Organizing State-Space-Model Approach for Parameter Estimation in Hodgkin-Huxley-Type Models of Single Neurons," PLOS Computational Biology, Public Library of Science, vol. 8(3), pages 1-1, March.
    4. Fuaada Mohd Siam & Muhamad Hanis Nasir, 2019. "Comparison of parameter fitting on the model of irradiation effects on bystander cells between Nelder-Mead simplex and particle swarm optimization," Journal of Advances in Technology and Engineering Research, A/Professor Akbar A. Khatibi, vol. 5(3), pages 142-150.
    5. Sungho Shin & Ophelia S Venturelli & Victor M Zavala, 2019. "Scalable nonlinear programming framework for parameter estimation in dynamic biological system models," PLOS Computational Biology, Public Library of Science, vol. 15(3), pages 1-29, March.
    6. Agus Hartoyo & Peter J Cadusch & David T J Liley & Damien G Hicks, 2019. "Parameter estimation and identifiability in a neural population model for electro-cortical activity," PLOS Computational Biology, Public Library of Science, vol. 15(5), pages 1-27, May.
    7. Afnizanfaizal Abdullah & Safaai Deris & Mohd Saberi Mohamad & Sohail Anwar, 2013. "An Improved Swarm Optimization for Parameter Estimation and Biological Model Selection," PLOS ONE, Public Library of Science, vol. 8(4), pages 1-16, April.
    8. Takanori Hasegawa & Rui Yamaguchi & Masao Nagasaki & Satoru Miyano & Seiya Imoto, 2014. "Inference of Gene Regulatory Networks Incorporating Multi-Source Biological Knowledge via a State Space Model with L1 Regularization," PLOS ONE, Public Library of Science, vol. 9(8), pages 1-19, August.
    9. Se Ho Park & Seokmin Ha & Jae Kyoung Kim, 2023. "A general model-based causal inference method overcomes the curse of synchrony and indirect effect," Nature Communications, Nature, vol. 14(1), pages 1-11, December.
    10. Yong-Jun Shin & Ali H Sayed & Xiling Shen, 2012. "Adaptive Models for Gene Networks," PLOS ONE, Public Library of Science, vol. 7(2), pages 1-6, February.
    11. González Javier & Vujačić Ivan & Wit Ernst, 2013. "Inferring latent gene regulatory network kinetics," Statistical Applications in Genetics and Molecular Biology, De Gruyter, vol. 12(1), pages 109-127, March.
    12. repec:plo:pone00:0232965 is not listed on IDEAS
    13. Marissa Renardy & Tau-Mu Yi & Dongbin Xiu & Ching-Shan Chou, 2018. "Parameter uncertainty quantification using surrogate models applied to a spatial model of yeast mating polarization," PLOS Computational Biology, Public Library of Science, vol. 14(5), pages 1-26, May.
    14. Afnizanfaizal Abdullah & Safaai Deris & Sohail Anwar & Satya N V Arjunan, 2013. "An Evolutionary Firefly Algorithm for the Estimation of Nonlinear Biological Model Parameters," PLOS ONE, Public Library of Science, vol. 8(3), pages 1-16, March.
    15. Wenlong He & Peng Xia & Xinan Zhang & Tianhai Tian, 2022. "Bayesian Inference Algorithm for Estimating Heterogeneity of Regulatory Mechanisms Based on Single-Cell Data," Mathematics, MDPI, vol. 10(24), pages 1-15, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009598. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.