Author
Listed:
- Gaurav Malhotra
- Marin Dujmović
- Jeffrey S Bowers
Abstract
Humans rely heavily on the shape of objects to recognise them. Recently, it has been argued that Convolutional Neural Networks (CNNs) can also show a shape-bias, provided their learning environment contains this bias. This has led to the proposal that CNNs provide good mechanistic models of shape-bias and, more generally, human visual processing. However, it is also possible that humans and CNNs show a shape-bias for very different reasons, namely, shape-bias in humans may be a consequence of architectural and cognitive constraints whereas CNNs show a shape-bias as a consequence of learning the statistics of the environment. We investigated this question by exploring shape-bias in humans and CNNs when they learn in a novel environment. We observed that, in this new environment, humans (i) focused on shape and overlooked many non-shape features, even when non-shape features were more diagnostic, (ii) learned based on only one out of multiple predictive features, and (iii) failed to learn when global features, such as shape, were absent. This behaviour contrasted with the predictions of a statistical inference model with no priors, showing the strong role that shape-bias plays in human feature selection. It also contrasted with CNNs that (i) preferred to categorise objects based on non-shape features, and (ii) increased reliance on these non-shape features as they became more predictive. This was the case even when the CNN was pre-trained to have a shape-bias and the convolutional backbone was frozen. These results suggest that shape-bias has a different source in humans and CNNs: while learning in CNNs is driven by the statistical properties of the environment, humans are highly constrained by their previous biases, which suggests that cognitive constraints play a key role in how humans learn to recognise novel objects.Author summary: Any object consists of hundreds of visual features that can be used to recognise it. How do humans select which feature to use? Do we always choose features that are best at predicting the object? In a series of experiments using carefully designed stimuli, we find that humans frequently ignore many features that are clearly visible and highly predictive. This behaviour is statistically inefficient and we show that it contrasts with statistical inference models such as state-of-the-art neural networks. Unlike humans, these models learn to rely on the most predictive feature when trained on the same data. We argue that the reason underlying human behaviour may be a bias to look for features that are less hungry for cognitive resources and generalise better to novel instances. Models that incorporate cognitive constraints may not only allow us to better understand human vision but also help us develop machine learning models that are more robust to changes in incidental features of objects.
Suggested Citation
Gaurav Malhotra & Marin Dujmović & Jeffrey S Bowers, 2022.
"Feature blindness: A challenge for understanding and modelling visual object recognition,"
PLOS Computational Biology, Public Library of Science, vol. 18(5), pages 1-27, May.
Handle:
RePEc:plo:pcbi00:1009572
DOI: 10.1371/journal.pcbi.1009572
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009572. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.