IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009536.html
   My bibliography  Save this article

Estimating ectopic beat probability with simplified statistical models that account for experimental uncertainty

Author

Listed:
  • Qingchu Jin
  • Joseph L Greenstein
  • Raimond L Winslow

Abstract

Ectopic beats (EBs) are cellular arrhythmias that can trigger lethal arrhythmias. Simulations using biophysically-detailed cardiac myocyte models can reveal how model parameters influence the probability of these cellular arrhythmias, however such analyses can pose a huge computational burden. Here, we develop a simplified approach in which logistic regression models (LRMs) are used to define a mapping between the parameters of complex cell models and the probability of EBs (P(EB)). As an example, in this study, we build an LRM for P(EB) as a function of the initial value of diastolic cytosolic Ca2+ concentration ([Ca2+]iini), the initial state of sarcoplasmic reticulum (SR) Ca2+ load ([Ca2+]SRini), and kinetic parameters of the inward rectifier K+ current (IK1) and ryanodine receptor (RyR). This approach, which we refer to as arrhythmia sensitivity analysis, allows for evaluation of the relationship between these arrhythmic event probabilities and their associated parameters. This LRM is also used to demonstrate how uncertainties in experimentally measured values determine the uncertainty in P(EB). In a study of the role of [Ca2+]SRini uncertainty, we show a special property of the uncertainty in P(EB), where with increasing [Ca2+]SRini uncertainty, P(EB) uncertainty first increases and then decreases. Lastly, we demonstrate that IK1 suppression, at the level that occurs in heart failure myocytes, increases P(EB).Author summary: An ectopic beat is an abnormal cellular electrical event which can trigger dangerous arrhythmias in the heart. Complex biophysical models of the cardiac myocyte can be used to reveal how cell properties affect the probability of ectopic beats. However, such analyses can pose a huge computational burden. We develop a simplified approach that enables a highly complex biophysical model to be reduced to a rather simple statistical model from which the functional relationship between myocyte model parameters and the probability of an ectopic beat is determined. We refer to this approach as arrhythmia sensitivity analysis. Given the efficiency of our approach, we also use it to demonstrate how uncertainties in experimentally measured myocyte model parameters determine the uncertainty in ectopic beat probability. We find that, with increasing model parameter uncertainty, the uncertainty in probability of ectopic beat first increases and then decreases. In general, our approach can efficiently analyze the relationship between cardiac myocyte parameters and the probability of ectopic beats and can be used to study how uncertainty of these cardiac myocyte parameters influences the ectopic beat probability.

Suggested Citation

  • Qingchu Jin & Joseph L Greenstein & Raimond L Winslow, 2021. "Estimating ectopic beat probability with simplified statistical models that account for experimental uncertainty," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-17, October.
  • Handle: RePEc:plo:pcbi00:1009536
    DOI: 10.1371/journal.pcbi.1009536
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009536
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009536&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009536?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009536. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.