IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009449.html
   My bibliography  Save this article

Estimating repeat spectra and genome length from low-coverage genome skims with RESPECT

Author

Listed:
  • Shahab Sarmashghi
  • Metin Balaban
  • Eleonora Rachtman
  • Behrouz Touri
  • Siavash Mirarab
  • Vineet Bafna

Abstract

The cost of sequencing the genome is dropping at a much faster rate compared to assembling and finishing the genome. The use of lightly sampled genomes (genome-skims) could be transformative for genomic ecology, and results using k-mers have shown the advantage of this approach in identification and phylogenetic placement of eukaryotic species. Here, we revisit the basic question of estimating genomic parameters such as genome length, coverage, and repeat structure, focusing specifically on estimating the k-mer repeat spectrum. We show using a mix of theoretical and empirical analysis that there are fundamental limitations to estimating the k-mer spectra due to ill-conditioned systems, and that has implications for other genomic parameters. We get around this problem using a novel constrained optimization approach (Spline Linear Programming), where the constraints are learned empirically. On reads simulated at 1X coverage from 66 genomes, our method, REPeat SPECTra Estimation (RESPECT), had 2.2% error in length estimation compared to 27% error previously achieved. In shotgun sequenced read samples with contaminants, RESPECT length estimates had median error 4%, in contrast to other methods that had median error 80%. Together, the results suggest that low-pass genomic sequencing can yield reliable estimates of the length and repeat content of the genome. The RESPECT software will be publicly available at https://urldefense.proofpoint.com/v2/url?u=https-3A__github.com_shahab-2Dsarmashghi_RESPECT.git&d=DwIGAw&c=-35OiAkTchMrZOngvJPOeA&r=ZozViWvD1E8PorCkfwYKYQMVKFoEcqLFm4Tg49XnPcA&m=f-xS8GMHKckknkc7Xpp8FJYw_ltUwz5frOw1a5pJ81EpdTOK8xhbYmrN4ZxniM96&s=717o8hLR1JmHFpRPSWG6xdUQTikyUjicjkipjFsKG4w&e=.Author summary: The cost of sequencing the genome is dropping at a much faster rate compared to assembling and finishing the genome. The use of lightly sampled genomes (genome skims) could be transformative for genomic ecology. Analyzing genome skims, mostly based on statistics of small oligomers, remains challenging, but recent results have shown the advantage of this approach for the identification and phylogenetic placement of eukaryotic species. In this paper, we present a method, RESPECT, to estimate genomic properties such as genome length and repetitiveness from low-coverage genome skims. We trained RESPECT using assembled genomes and tested it on low-coverage simulated and real reads. Benchmarking results reveal that RESPECT has excellent accuracy in estimating the genome length compared to other methods, and can provide critical information regarding the repeat structure of the genome.

Suggested Citation

  • Shahab Sarmashghi & Metin Balaban & Eleonora Rachtman & Behrouz Touri & Siavash Mirarab & Vineet Bafna, 2021. "Estimating repeat spectra and genome length from low-coverage genome skims with RESPECT," PLOS Computational Biology, Public Library of Science, vol. 17(11), pages 1-23, November.
  • Handle: RePEc:plo:pcbi00:1009449
    DOI: 10.1371/journal.pcbi.1009449
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009449
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009449&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009449?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009449. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.