IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1009363.html
   My bibliography  Save this article

Universal risk phenotype of US counties for flu-like transmission to improve county-specific COVID-19 incidence forecasts

Author

Listed:
  • Yi Huang
  • Ishanu Chattopadhyay

Abstract

The spread of a communicable disease is a complex spatio-temporal process shaped by the specific transmission mechanism, and diverse factors including the behavior, socio-economic and demographic properties of the host population. While the key factors shaping transmission of influenza and COVID-19 are beginning to be broadly understood, making precise forecasts on case count and mortality is still difficult. In this study we introduce the concept of a universal geospatial risk phenotype of individual US counties facilitating flu-like transmission mechanisms. We call this the Universal Influenza-like Transmission (UnIT) score, which is computed as an information-theoretic divergence of the local incidence time series from an high-risk process of epidemic initiation, inferred from almost a decade of flu season incidence data gleaned from the diagnostic history of nearly a third of the US population. Despite being computed from the past seasonal flu incidence records, the UnIT score emerges as the dominant factor explaining incidence trends for the COVID-19 pandemic over putative demographic and socio-economic factors. The predictive ability of the UnIT score is further demonstrated via county-specific weekly case count forecasts which consistently outperform the state of the art models throughout the time-line of the COVID-19 pandemic. This study demonstrates that knowledge of past epidemics may be used to chart the course of future ones, if transmission mechanisms are broadly similar, despite distinct disease processes and causative pathogens.Author summary: Accurate case count forecasts in an epidemic is non-trivial, with the spread of infectious diseases being modulated by diverse hard-to-model factors. This study introduces the concept of a universal risk phenotype for US counties that predictably increases the risk of person-to-person transmission of influenza-like illnesses; universal in the sense that it is pathogen-agnostic provided the transmission mechanism is similar to that of seasonal influenza. We call this the Universal Influenza-like Transmission (UnIT) score, which accounts for unmodeled effects by automatically leveraging subtle geospatial patterns underlying the flu epidemics of the past. It is a phenotype of the counties themselves, as it characterizes how the transmission process is differentially impacted in different geospatial contexts. Grounded in information-theory and machine learning, the UnIT score reduces the need to manually identify every factor that impacts the case counts. Applying to the COVID-19 pandemic, we show that incidence patterns from a past epidemic caused by an appropriately-chosen distinct pathogen can substantially inform future projections. Our forecasts consistently outperform the state of the art models throughout the time-line of the COVID-19 pandemic, and thus is an important step to inform policy decisions in current and future pandemics.

Suggested Citation

  • Yi Huang & Ishanu Chattopadhyay, 2021. "Universal risk phenotype of US counties for flu-like transmission to improve county-specific COVID-19 incidence forecasts," PLOS Computational Biology, Public Library of Science, vol. 17(10), pages 1-28, October.
  • Handle: RePEc:plo:pcbi00:1009363
    DOI: 10.1371/journal.pcbi.1009363
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1009363
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1009363&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1009363?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009363. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.