Author
Listed:
- Mario Rubio-Teves
- Sergio Díez-Hermano
- César Porrero
- Abel Sánchez-Jiménez
- Lucía Prensa
- Francisco Clascá
- María García-Amado
- José Antonio Villacorta-Atienza
Abstract
Projection neurons are the commonest neuronal type in the mammalian forebrain and their individual characterization is a crucial step to understand how neural circuitry operates. These cells have an axon whose arborizations extend over long distances, branching in complex patterns and/or in multiple brain regions. Axon length is a principal estimate of the functional impact of the neuron, as it directly correlates with the number of synapses formed by the axon in its target regions; however, its measurement by direct 3D axonal tracing is a slow and labor-intensive method. On the contrary, axon length estimations have been recently proposed as an effective and accessible alternative, allowing a fast approach to the functional significance of the single neuron. Here, we analyze the accuracy and efficiency of the most used length estimation tools—design-based stereology by virtual planes or spheres, and mathematical correction of the 2D projected-axon length—in contrast with direct measurement, to quantify individual axon length. To this end, we computationally simulated each tool, applied them over a dataset of 951 3D-reconstructed axons (from NeuroMorpho.org), and compared the generated length values with their 3D reconstruction counterparts. The evaluated reliability of each axon length estimation method was then balanced with the required human effort, experience and know-how, and economic affordability. Subsequently, computational results were contrasted with measurements performed on actual brain tissue sections. We show that the plane-based stereological method balances acceptable errors (~5%) with robustness to biases, whereas the projection-based method, despite its accuracy, is prone to inherent biases when implemented in the laboratory. This work, therefore, aims to provide a constructive benchmark to help guide the selection of the most efficient method for measuring specific axonal morphologies according to the particular circumstances of the conducted research.Author summary: Characterization of single neurons is a crucial step to understand how neural circuitry operates. Visualization of individual neurons is feasible thanks to labelling techniques that allow precise measurements at cellular resolution. This milestone gave access to powerful estimators of the functional impact of a neuron, such as axon length. Although techniques relying on direct 3D reconstruction of individual axons are the gold standard, handiness and accessibility are still an issue. Indirect estimations of axon length have been proposed as agile and effective alternatives, each offering different solutions to the accuracy-cost tradeoff. In this work we report a computational benchmarking between three experimental tools used for axon length estimation on brain tissue sections. Performance of each tool was simulated and tested for 951 3D-reconstructed axons, by comparing estimated axon lengths against direct measurements. Assessment of suitability to different research and funding circumstances is also provided, taking into consideration factors such as training expertise, economic cost and required equipment, alongside methodological results. These findings could be an important reference for research on neuronal wiring, as well as for broader studies involving neuroanatomical and neural circuit modelling.
Suggested Citation
Mario Rubio-Teves & Sergio Díez-Hermano & César Porrero & Abel Sánchez-Jiménez & Lucía Prensa & Francisco Clascá & María García-Amado & José Antonio Villacorta-Atienza, 2021.
"Benchmarking of tools for axon length measurement in individually-labeled projection neurons,"
PLOS Computational Biology, Public Library of Science, vol. 17(12), pages 1-22, December.
Handle:
RePEc:plo:pcbi00:1009051
DOI: 10.1371/journal.pcbi.1009051
Download full text from publisher
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1009051. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.