IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008680.html
   My bibliography  Save this article

Dynamics of chromosomal target search by a membrane-integrated one-component receptor

Author

Listed:
  • Linda Martini
  • Sophie Brameyer
  • Elisabeth Hoyer
  • Kirsten Jung
  • Ulrich Gerland

Abstract

Membrane proteins account for about one third of the cellular proteome, but it is still unclear how dynamic they are and how they establish functional contacts with cytoplasmic interaction partners. Here, we consider a membrane-integrated one-component receptor that also acts as a transcriptional activator, and analyze how it kinetically locates its specific binding site on the genome. We focus on the case of CadC, the pH receptor of the acid stress response Cad system in E. coli. CadC is a prime example of a one-component signaling protein that directly binds to its cognate target site on the chromosome to regulate transcription. We combined fluorescence microscopy experiments, mathematical analysis, and kinetic Monte Carlo simulations to probe this target search process. Using fluorescently labeled CadC, we measured the time from activation of the receptor until successful binding to the DNA in single cells, exploiting that stable receptor-DNA complexes are visible as fluorescent spots. Our experimental data indicate that CadC is highly mobile in the membrane and finds its target by a 2D diffusion and capture mechanism. DNA mobility is constrained due to the overall chromosome organization, but a labeled DNA locus in the vicinity of the target site appears sufficiently mobile to randomly come close to the membrane. Relocation of the DNA target site to a distant position on the chromosome had almost no effect on the mean search time, which was between four and five minutes in either case. However, a mutant strain with two binding sites displayed a mean search time that was reduced by about a factor of two. This behavior is consistent with simulations of a coarse-grained lattice model for the coupled dynamics of DNA within a cell volume and proteins on its surface. The model also rationalizes the experimentally determined distribution of search times. Overall our findings reveal that DNA target search does not present a much bigger kinetic challenge for membrane-integrated proteins than for cytoplasmic proteins. More generally, diffusion and capture mechanisms may be sufficient for bacterial membrane proteins to establish functional contacts with cytoplasmic targets.Author summary: Adaptation to changing environments is vital to bacteria and is enabled by sophisticated signal transduction systems. While signal transduction by two-component systems is well studied, the signal transduction of membrane-integrated one-component systems, where one protein performs both sensing and response regulation, are insufficiently understood. How can a membrane-integrated protein bind to specific sites on the genome to regulate transcription? Here, we study the kinetics of this process, which involves both protein diffusion within the membrane and conformational fluctuations of the genomic DNA. A well-suited model system for this question is CadC, the signaling protein of the E. coli Cad system involved in pH stress response. Fluorescently labeled CadC forms visible spots in single cells upon stable DNA-binding, marking the end of the protein-DNA search process. Moreover, the start of the search is triggered by a medium shift exposing cells to pH stress. We probe the underlying mechanism by varying the number and position of DNA target sites. We combine these experiments with mathematical analysis and kinetic Monte Carlo simulations of lattice models for the search process. Our results suggest that CadC diffusion in the membrane is pivotal for this search, while the DNA target site is just mobile enough to reach the membrane.

Suggested Citation

  • Linda Martini & Sophie Brameyer & Elisabeth Hoyer & Kirsten Jung & Ulrich Gerland, 2021. "Dynamics of chromosomal target search by a membrane-integrated one-component receptor," PLOS Computational Biology, Public Library of Science, vol. 17(2), pages 1-24, February.
  • Handle: RePEc:plo:pcbi00:1008680
    DOI: 10.1371/journal.pcbi.1008680
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008680
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008680&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008680?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Itzhak Fishov & Sharanya Namboodiri, 2023. "A nonstop thrill ride from genes to the assembly of the T3SS injectisome," Nature Communications, Nature, vol. 14(1), pages 1-3, December.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008680. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.