IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008545.html
   My bibliography  Save this article

Sensor-based localization of epidemic sources on human mobility networks

Author

Listed:
  • Jun Li
  • Juliane Manitz
  • Enrico Bertuzzo
  • Eric D Kolaczyk

Abstract

We investigate the source detection problem in epidemiology, which is one of the most important issues for control of epidemics. Mathematically, we reformulate the problem as one of identifying the relevant component in a multivariate Gaussian mixture model. Focusing on the study of cholera and diseases with similar modes of transmission, we calibrate the parameters of our mixture model using human mobility networks within a stochastic, spatially explicit epidemiological model for waterborne disease. Furthermore, we adopt a Bayesian perspective, so that prior information on source location can be incorporated (e.g., reflecting the impact of local conditions). Posterior-based inference is performed, which permits estimates in the form of either individual locations or regions. Importantly, our estimator only requires first-arrival times of the epidemic by putative observers, typically located only at a small proportion of nodes. The proposed method is demonstrated within the context of the 2000-2002 cholera outbreak in the KwaZulu-Natal province of South Africa.Author summary: Tracking the source of an epidemic outbreak is of crucial importance as it allows for identification of communities where control efforts should be focused for both short and long-term management and control of the disease. However, such identification is often problematic, time-consuming, and data-intensive. Recently network-based analysis approaches have been established for source detection to account for complex modern spreading, driven substantially by human mobility. Here we develop a probabilistic framework for waterborne disease, that allows investigators to infer the community or the region sparking an outbreak based on a sparse surveillance network. The framework can integrate prior information on the likelihood of a community being the source, for instance as a function of population size or hygiene conditions. Furthermore, we assign an accuracy measure to the resulting source estimate, which is crucial for its practical usability. We test the method in the context of the 2000-2002 cholera outbreak in the KwaZulu-Natal province with promising results. Moreover, we outline a series of guidelines in terms of data needs and preliminary operations to implement the proposed framework in practice.

Suggested Citation

  • Jun Li & Juliane Manitz & Enrico Bertuzzo & Eric D Kolaczyk, 2021. "Sensor-based localization of epidemic sources on human mobility networks," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-21, January.
  • Handle: RePEc:plo:pcbi00:1008545
    DOI: 10.1371/journal.pcbi.1008545
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008545
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008545&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008545?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008545. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.