IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008464.html
   My bibliography  Save this article

Drug2ways: Reasoning over causal paths in biological networks for drug discovery

Author

Listed:
  • Daniel Rivas-Barragan
  • Sarah Mubeen
  • Francesc Guim Bernat
  • Martin Hofmann-Apitius
  • Daniel Domingo-Fernández

Abstract

Elucidating the causal mechanisms responsible for disease can reveal potential therapeutic targets for pharmacological intervention and, accordingly, guide drug repositioning and discovery. In essence, the topology of a network can reveal the impact a drug candidate may have on a given biological state, leading the way for enhanced disease characterization and the design of advanced therapies. Network-based approaches, in particular, are highly suited for these purposes as they hold the capacity to identify the molecular mechanisms underlying disease. Here, we present drug2ways, a novel methodology that leverages multimodal causal networks for predicting drug candidates. Drug2ways implements an efficient algorithm which reasons over causal paths in large-scale biological networks to propose drug candidates for a given disease. We validate our approach using clinical trial information and demonstrate how drug2ways can be used for multiple applications to identify: i) single-target drug candidates, ii) candidates with polypharmacological properties that can optimize multiple targets, and iii) candidates for combination therapy. Finally, we make drug2ways available to the scientific community as a Python package that enables conducting these applications on multiple standard network formats.Author summary: At any given time, a large set of biomolecules are interacting in ways that give rise to the normal functioning of a cell. By representing biological interactions as networks, we can reconstruct the complex molecular mechanisms that govern the physiology of a cell. These networks can then be analyzed to understand where the system fails and how that can give rise to disease. Similarly, using computational methods, we can also enrich these networks with drugs, diseases and disease phenotypes to estimate how a drug, or a combination of drugs, would behave in a system and whether it can be used to treat or alleviate the symptoms of a disease. In this paper, we present drug2ways, a novel methodology designed for drug discovery applications, that exploits the information contained in a biological network comprising causal relations between drugs, proteins, and diseases. Employing these networks and an efficient algorithm, drugways2 traverses over the ensemble of paths between a drug and a disease to propose the drugs that are most likely to cure the disease based on the information contained in the network. We hypothesize that this ensemble of paths could be used to simulate the mechanism of action of a drug and the directionality inferred through these paths could be used as a proxy to identify drug candidates. Through several experiments, we demonstrate how drug2ways can be used to find novel ways of using existing drugs, identify drug candidates, optimize treatments by targeting multiple disease phenotypes, and propose combination therapies. Owing to the generalizability of the algorithm and the accompanying software, we ambition that drug2ways could be applied to a variety of biological networks to generate new hypotheses for drug discovery and a better understanding of their mechanisms of action.

Suggested Citation

  • Daniel Rivas-Barragan & Sarah Mubeen & Francesc Guim Bernat & Martin Hofmann-Apitius & Daniel Domingo-Fernández, 2020. "Drug2ways: Reasoning over causal paths in biological networks for drug discovery," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-21, December.
  • Handle: RePEc:plo:pcbi00:1008464
    DOI: 10.1371/journal.pcbi.1008464
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008464
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008464&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008464?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008464. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.