IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008445.html
   My bibliography  Save this article

Optimal adjustment of the human circadian clock in the real world

Author

Listed:
  • Samuel Christensen
  • Yitong Huang
  • Olivia J Walch
  • Daniel B Forger

Abstract

Which suggestions for behavioral modifications, based on mathematical models, are most likely to be followed in the real world? We address this question in the context of human circadian rhythms. Jet lag is a consequence of the misalignment of the body’s internal circadian (~24-hour) clock during an adjustment to a new schedule. Light is the clock’s primary synchronizer. Previous research has used mathematical models to compute light schedules that shift the circadian clock to a new time zone as quickly as possible. How users adjust their behavior when provided with these optimal schedules remains an open question. Here, we report data collected by wearables from more than 100 travelers as they cross time zones using a smartphone app, Entrain. We find that people rarely follow the optimal schedules generated through mathematical modeling entirely, but travelers who better followed the optimal schedules reported more positive moods after their trips. Using the data collected, we improve the optimal schedule predictions to accommodate real-world constraints. We also develop a scheduling algorithm that allows for the computation of approximately optimal schedules "on-the-fly" in response to disruptions. User burnout may not be critically important as long as the first parts of a schedule are followed. These results represent a crucial improvement in making the theoretical results of past work viable for practical use and show how theoretical predictions based on known human physiology can be efficiently used in real-world settings.Author summary: Jet lag, a significant problem for travelers and shift workers, occurs when our body’s internal circadian (~24-hour) clock is misaligned with the time of day in the environment. Such circadian misalignment can lead to decreased performance, impaired sleep, and increased risk for severe health conditions, ranging from cancer to cardiovascular disease. Previous work has proposed mathematically optimal schedules, based on mathematical models of the human circadian pacemaker, to overcome jet lag in minimal time. Here, we use data collected from over 100 travelers by a mobile app to track when users followed or deviated from optimal schedules. Better adherence to the schedules yielded better outcomes. We also propose more practical schedules, which can be adjusted to the real-world challenges in overcoming jet lag. Our work sets the stage for changing human behaviors in other domains by computing personalized recommendations from mathematical models.

Suggested Citation

  • Samuel Christensen & Yitong Huang & Olivia J Walch & Daniel B Forger, 2020. "Optimal adjustment of the human circadian clock in the real world," PLOS Computational Biology, Public Library of Science, vol. 16(12), pages 1-18, December.
  • Handle: RePEc:plo:pcbi00:1008445
    DOI: 10.1371/journal.pcbi.1008445
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008445
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008445&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008445?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. A Agung Julius & Jiawei Yin & John T Wen, 2019. "Time optimal entrainment control for circadian rhythm," PLOS ONE, Public Library of Science, vol. 14(12), pages 1-30, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jiawei Yin & Agung Julius & John T. Wen & Zhen Wang & Chuanlin He & Lei Kou, 2022. "Human Alertness Optimization with a Three-Process Dynamic Model," Mathematics, MDPI, vol. 10(11), pages 1-19, June.
    2. Jim Parker & Claire O’Brien & Jason Hawrelak & Felice L. Gersh, 2022. "Polycystic Ovary Syndrome: An Evolutionary Adaptation to Lifestyle and the Environment," IJERPH, MDPI, vol. 19(3), pages 1-25, January.
    3. Jiawei Yin & A Agung Julius & John T Wen, 2021. "Optimization of light exposure and sleep schedule for circadian rhythm entrainment," PLOS ONE, Public Library of Science, vol. 16(6), pages 1-28, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008445. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.