IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1008122.html
   My bibliography  Save this article

Inferring transmission heterogeneity using virus genealogies: Estimation and targeted prevention

Author

Listed:
  • Yunjun Zhang
  • Thomas Leitner
  • Jan Albert
  • Tom Britton

Abstract

Spread of HIV typically involves uneven transmission patterns where some individuals spread to a large number of individuals while others to only a few or none. Such transmission heterogeneity can impact how fast and how much an epidemic spreads. Further, more efficient interventions may be achieved by taking such transmission heterogeneity into account. To address these issues, we developed two phylogenetic methods based on virus sequence data: 1) to generally detect if significant transmission heterogeneity is present, and 2) to pinpoint where in a phylogeny high-level spread is occurring. We derive inference procedures to estimate model parameters, including the amount of transmission heterogeneity, in a sampled epidemic. We show that it is possible to detect transmission heterogeneity under a wide range of simulated situations, including incomplete sampling, varying levels of heterogeneity, and including within-host genetic diversity. When evaluating real HIV-1 data from different epidemic scenarios, we found a lower level of transmission heterogeneity in slowly spreading situations and a higher level of heterogeneity in data that included a rapid outbreak, while R0 and Sackin’s index (overall tree shape statistic) were similar in the two scenarios, suggesting that our new method is able to detect transmission heterogeneity in real data. We then show by simulations that targeted prevention, where we pinpoint high-level spread using a coalescence measurement, is efficient when sequence data are collected in an ongoing surveillance system. Such phylogeny-guided prevention is efficient under both single-step contact tracing as well as iterative contact tracing as compared to random intervention.Author summary: Detecting and preventing pathogen outbreaks in the background of steady and slow spread is difficult, yet highly desirable, because such transmission heterogeneity can be a main driver of an epidemic. Hence, detection of transmission heterogeneity may direct prevention efforts and reduce future infections. While incidence and prevalence estimates may give overall indications of an epidemic’s progression, they typically cannot indicate episodic outbreaks or rapid spreads in subpopulations. Likewise, detailed and reliable information about dynamic social networks is rare and not generalizable to detect local outbreaks. HIV sequence data can be used to reconstruct HIV phylogenies, which due to HIV’s high evolutionary rate contain information about both transmission networks and rates of spread. Here, we use HIV phylogenies to first design a general heterogeneity detection method that can signal that there is high-level spreading present. Secondly, we develop a phylogenetic method to pinpoint which individuals that may have been infected by a super-spreader or have been involved in an outbreak. We show that using such phylogeny-guided information to prevent future HIV spread is highly efficient under many epidemiological situations, especially in typical public health situations where samples are collected through time.

Suggested Citation

  • Yunjun Zhang & Thomas Leitner & Jan Albert & Tom Britton, 2020. "Inferring transmission heterogeneity using virus genealogies: Estimation and targeted prevention," PLOS Computational Biology, Public Library of Science, vol. 16(9), pages 1-27, September.
  • Handle: RePEc:plo:pcbi00:1008122
    DOI: 10.1371/journal.pcbi.1008122
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008122
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1008122&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1008122?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1008122. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.