IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007762.html
   My bibliography  Save this article

Structured environments foster competitor coexistence by manipulating interspecies interfaces

Author

Listed:
  • Tristan Ursell

Abstract

Natural environments, like soils or the mammalian gut, frequently contain microbial consortia competing within a niche, wherein many species contain genetically encoded mechanisms of interspecies competition. Recent computational work suggests that physical structures in the environment can stabilize local competition between species that would otherwise be subject to competitive exclusion under isotropic conditions. Here we employ Lotka-Volterra models to show that interfacial competition localizes to physical structures, stabilizing competitive ecological networks of many species, even with significant differences in the strength of competitive interactions between species. Within a limited range of parameter space, we show that for stable communities the length-scale of physical structure inversely correlates with the width of the distribution of competitive fitness, such that physical environments with finer structure can sustain a broader spectrum of interspecific competition. These results highlight the potentially stabilizing effects of physical structure on microbial communities and lay groundwork for engineering structures that stabilize and/or select for diverse communities of ecological, medical, or industrial utility.Author summary: Natural environments often have many species competing for the same resources and frequently one species will out-compete others. This poses the fundamental question of how a diverse array of species can coexist in a resource-limited environment. Among other mechanisms, previous studies examined how interactions between species–like cooperation or predation–could lead to stable biodiversity. In this work we looked at this question from a different angle: we used computational models to examine the role that the environment itself might play in stabilizing species that compete with each other when in proximity. We modeled how species arrange themselves in space when the environment contains objects that alter the interfaces along which competing species meet. We found that these ‘structured’ environments can stabilize species coexistence, across a range of density of those objects and in a way that was robust to differing strengths of interspecies competition. Thus, in addition to biological factors and other forms of environmental variation, our work presents a potentially generic mechanism by which the physical structure of the environment can influence ecological outcomes and stabilize biodiversity.

Suggested Citation

  • Tristan Ursell, 2021. "Structured environments foster competitor coexistence by manipulating interspecies interfaces," PLOS Computational Biology, Public Library of Science, vol. 17(1), pages 1-23, January.
  • Handle: RePEc:plo:pcbi00:1007762
    DOI: 10.1371/journal.pcbi.1007762
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007762
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007762&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007762?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007762. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.