IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007539.html
   My bibliography  Save this article

Protons in small spaces: Discrete simulations of vesicle acidification

Author

Listed:
  • Apeksha Singh
  • Frank V Marcoline
  • Salome Veshaguri
  • Aimee W Kao
  • Marcel Bruchez
  • Joseph A Mindell
  • Dimitrios Stamou
  • Michael Grabe

Abstract

The lumenal pH of an organelle is one of its defining characteristics and central to its biological function. Experiments have elucidated many of the key pH regulatory elements and how they vary from compartment-to-compartment, and continuum mathematical models have played an important role in understanding how these elements (proton pumps, counter-ion fluxes, membrane potential, buffering capacity, etc.) work together to achieve specific pH setpoints. While continuum models have proven successful in describing ion regulation at the cellular length scale, it is unknown if they are valid at the subcellular level where volumes are small, ion numbers may fluctuate wildly, and biochemical heterogeneity is large. Here, we create a discrete, stochastic (DS) model of vesicular acidification to answer this question. We used this simplified model to analyze pH measurements of isolated vesicles containing single proton pumps and compared these results to solutions from a continuum, ordinary differential equations (ODE)-based model. Both models predict similar parameter estimates for the mean proton pumping rate, membrane permeability, etc., but, as expected, the ODE model fails to report on the fluctuations in the system. The stochastic model predicts that pH fluctuations decrease during acidification, but noise analysis of single-vesicle data confirms our finding that the experimental noise is dominated by the fluorescent dye, and it reveals no insight into the true noise in the proton fluctuations. Finally, we again use the reduced DS model explore the acidification of large, lysosome-like vesicles to determine how stochastic elements, such as variations in proton-pump copy number and cycling between on and off states, impact the pH setpoint and fluctuations around this setpoint.Author summary: Organelles harbor specific ion channels, transporters, and other molecular components that allow them to achieve specific intracellular ionic conditions required for their proper function. How all of these components work together to regulate these concentrations, such as maintaining a specific pH value, is complex, and continuum mathematical models have been helpful for evaluating different mechanisms and making quantitative predictions that can be tested experimentally. Nonetheless, organelles can be quite small and some contain only a handful of free protons—can continuum models accurately describe systems with so few molecules? We tested this by creating a discrete, stochastic (DS) model of vesicle acidification that tracks how all of these individual molecules in the vesicle change their state in time. When fitting experimental data, the DS model provides the same parameter estimates as a corresponding continuum model, indicating that both models are equally valid. However, the DS model additionally informs on the noise in the vesicle. When compared to the experimental noise in pH, we show that there is no agreement, because experimental fluctuations do not report on the true pH fluctuations, but rather they report on the fluctuations in reporter molecule protonation. Given experimental limitations, our result highlights the importance of DS models in predicting noise in organelles.

Suggested Citation

  • Apeksha Singh & Frank V Marcoline & Salome Veshaguri & Aimee W Kao & Marcel Bruchez & Joseph A Mindell & Dimitrios Stamou & Michael Grabe, 2019. "Protons in small spaces: Discrete simulations of vesicle acidification," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-21, December.
  • Handle: RePEc:plo:pcbi00:1007539
    DOI: 10.1371/journal.pcbi.1007539
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007539
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007539&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007539?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007539. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.