IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007537.html
   My bibliography  Save this article

Molecular sampling at logarithmic rates for next-generation sequencing

Author

Listed:
  • Caroline Horn
  • Julia Salzman

Abstract

Next-generation sequencing is a cutting edge technology, but to quantify a dynamic range of abundances for different RNA or DNA species requires increasing sampling depth to levels that can be prohibitively expensive due to physical limits on molecular throughput of sequencers. To overcome this problem, we introduce a new general sampling theory which uses biophysical principles to functionally encode the abundance of a species before sampling, SeQUential depletIon and enriCHment (SQUICH). In theory and simulation, SQUICH enables sampling at a logarithmic rate to achieve the same precision as attained with conventional sequencing. A simple proof of principle experimental implementation of SQUICH in a controlled complex system of ~262,000 oligonucleotides already reduces sequencing depth by a factor of 10. SQUICH lays the groundwork for a general solution to a fundamental problem in molecular sampling and enables a new generation of efficient, precise molecular measurement at logarithmic or better sampling depth.Author summary: Next-generation sequencing enables measurement of chemical and biological signals at high throughput and falling cost. Conventional sequencing uses a process called simple random sampling which requires increasing the number of samples to be able to detect a signal precisely. We have developed a new way to sample, by first performing computations with DNA and then only sampling the output of the computations, requiring a much smaller number of samples to estimate at the same precision as without this method. In common applications such as RNA sequencing or biomarker detection, the method requires 100–1000 fold less sampling, and so reduces cost by 100–1000 fold. This means that the scale and precision of molecular measurement can be dramatically increased, enabling new efficiency in detecting biological molecules.

Suggested Citation

  • Caroline Horn & Julia Salzman, 2019. "Molecular sampling at logarithmic rates for next-generation sequencing," PLOS Computational Biology, Public Library of Science, vol. 15(12), pages 1-12, December.
  • Handle: RePEc:plo:pcbi00:1007537
    DOI: 10.1371/journal.pcbi.1007537
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007537
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007537&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007537?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007537. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.