IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007381.html
   My bibliography  Save this article

LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes

Author

Listed:
  • Olivier Collier
  • Véronique Stoven
  • Jean-Philippe Vert

Abstract

Cancer driver genes, i.e., oncogenes and tumor suppressor genes, are involved in the acquisition of important functions in tumors, providing a selective growth advantage, allowing uncontrolled proliferation and avoiding apoptosis. It is therefore important to identify these driver genes, both for the fundamental understanding of cancer and to help finding new therapeutic targets or biomarkers. Although the most frequently mutated driver genes have been identified, it is believed that many more remain to be discovered, particularly for driver genes specific to some cancer types. In this paper, we propose a new computational method called LOTUS to predict new driver genes. LOTUS is a machine-learning based approach which allows to integrate various types of data in a versatile manner, including information about gene mutations and protein-protein interactions. In addition, LOTUS can predict cancer driver genes in a pan-cancer setting as well as for specific cancer types, using a multitask learning strategy to share information across cancer types. We empirically show that LOTUS outperforms five other state-of-the-art driver gene prediction methods, both in terms of intrinsic consistency and prediction accuracy, and provide predictions of new cancer genes across many cancer types.Author summary: Cancer development is driven by mutations and dysfunction of important, so-called cancer driver genes, that could be targeted by specific therapies. While a number of such cancer genes have already been identified, it is believed that many more remain to be discovered. To help prioritize experimental investigations of candidate genes, several computational methods have been proposed to rank promising candidates based on their mutations in large cohorts of cancer cases, or on their interactions with known driver genes in biological networks. We propose LOTUS, a new computational approach to identify genes with high oncogenic potential. LOTUS implements a machine learning approach to learn an oncogenic potential score from known driver genes, and brings two novelties compared to existing methods. First, it allows to easily combine heterogeneous sources of information into the scoring function, which we illustrate by learning a scoring function from both known mutations in large cancer cohorts and interactions in biological networks. Second, using a multitask learning strategy, it can predict different driver genes for different cancer types, while sharing information between them to improve the prediction for every type. We provide experimental results showing that LOTUS significantly outperforms several state-of-the-art cancer gene prediction software.

Suggested Citation

  • Olivier Collier & Véronique Stoven & Jean-Philippe Vert, 2019. "LOTUS: A single- and multitask machine learning algorithm for the prediction of cancer driver genes," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-27, September.
  • Handle: RePEc:plo:pcbi00:1007381
    DOI: 10.1371/journal.pcbi.1007381
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007381
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007381&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007381?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007381. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.