IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007346.html
   My bibliography  Save this article

Loop analysis of blood pressure/volume homeostasis

Author

Listed:
  • Bruno Burlando
  • Franco Blanchini
  • Giulia Giordano

Abstract

We performed a mathematical analysis of the dynamic control loops regulating the vasomotor tone of vascular smooth muscle, blood volume, and mean arterial pressure, which involve the arginine vasopressin (AVP) system, the atrial natriuretic peptide system (ANP), and the renin-angiotensin-aldosterone system (RAAS). Our loop analysis of the AVP-ANP-RAAS system revealed the concurrent presence of two different regulatory mechanisms, which perform the same qualitative function: one affects blood pressure by regulating vasoconstriction, the other by regulating blood volume. Both the systems are candidate oscillators consisting of the negative-feedback loop of a monotone system: they admit a single equilibrium that can either be stable or give rise to oscillatory instability. Also a subsystem, which includes ANP and AVP stimulation of vascular smooth muscle cells, turns out to be a candidate oscillator composed of a monotone system with multiple negative feedback loops, and we show that its oscillatory potential is higher when the delays along all feedback loops are comparable. Our results give insight into the physiological mechanisms ruling long-term homeostasis of blood hydraulic parameters, which operate based on dynamical loops of interactions.Author summary: The efficiency and resilience of our body are guaranteed by the presence of myriads of dynamic control loops that regulate fundamental vital functions. In this work, we studied the regulatory mechanisms that govern the interplay of vasoconstriction/vasodilation, blood volume and mean arterial pressure. We analysed the loops in the system and showed the presence of two coexisting mechanisms for blood pressure regulation, which perform the same qualitative function, conferring robustness to the system: one mechanism tunes vasoconstriction, the other blood volume. We showed that both systems are candidate oscillators: either they are stable or they oscillate regularly around their unique equilibrium. We analysed a subsystem that describes the stimulation of vascular smooth muscle cells due to the hormones arginine vasopressin (AVP) and atrial natriuretic peptide (ANP): also this system is a candidate oscillator ruled by multiple negative-feedback loops, and its potential for oscillations is higher when all the loops have similar delay. Our results cast light on the fundamental physiological phenomena that preserve the stable functioning of blood pressure and volume. This could have even wider relevance if other homeostasis and endocrine systems displayed similar features, with repercussions on the management of adverse homeostasis shifts like hypertension.

Suggested Citation

  • Bruno Burlando & Franco Blanchini & Giulia Giordano, 2019. "Loop analysis of blood pressure/volume homeostasis," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-24, September.
  • Handle: RePEc:plo:pcbi00:1007346
    DOI: 10.1371/journal.pcbi.1007346
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007346
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007346&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007346?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007346. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.