IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1007305.html
   My bibliography  Save this article

Long-term dynamics of measles in London: Titrating the impact of wars, the 1918 pandemic, and vaccination

Author

Listed:
  • Alexander D Becker
  • Amy Wesolowski
  • Ottar N Bjørnstad
  • Bryan T Grenfell

Abstract

A key question in ecology is the relative impact of internal nonlinear dynamics and external perturbations on the long-term trajectories of natural systems. Measles has been analyzed extensively as a paradigm for consumer-resource dynamics due to the oscillatory nature of the host-pathogen life cycle, the abundance of rich data to test theory, and public health relevance. The dynamics of measles in London, in particular, has acted as a prototypical test bed for such analysis using incidence data from the pre-vaccination era (1944–1967). However, during this timeframe there were few external large-scale perturbations, limiting an assessment of the relative impact of internal and extra demographic perturbations to the host population. Here, we extended the previous London analyses to include nearly a century of data that also contains four major demographic changes: the First and Second World Wars, the 1918 influenza pandemic, and the start of a measles mass vaccination program. By combining mortality and incidence data using particle filtering methods, we show that a simple stochastic epidemic model, with minimal historical specifications, can capture the nearly 100 years of dynamics including changes caused by each of the major perturbations. We show that the majority of dynamic changes are explainable by the internal nonlinear dynamics of the system, tuned by demographic changes. In addition, the 1918 influenza pandemic and World War II acted as extra perturbations to this basic epidemic oscillator. Our analysis underlines that long-term ecological and epidemiological dynamics can follow very simple rules, even in a non-stationary population subject to significant perturbations and major secular changes.Author summary: The impact of intrinsic versus external drivers of transmission on long-term dynamics is an open question in complex systems studies. In particular, when and where dynamics become chaotic has crucial implications for control efforts. Here, we extended the well-studied London measles data to include nearly a century of novel data (1897–1991) that also contains five major demographic changes: the First and Second World Wars, the wartime evacuation of London, the 1918 influenza pandemic, and the start of a measles mass vaccination program. We found that a simple stochastic epidemic model, with minimal historical specifications, can capture the nearly 100 years of dynamics including changes caused by each of the major perturbations. We further illustrated that the majority of dynamic changes are explainable by the internal nonlinear dynamics of the system, tuned by demographic changes. Notably however, the 1918 influenza pandemic and evacuation acted as external perturbations to this basic epidemic oscillator. Yet, in the wake of these massive shifts, the overall system remained stable (Lyapunov exponent

Suggested Citation

  • Alexander D Becker & Amy Wesolowski & Ottar N Bjørnstad & Bryan T Grenfell, 2019. "Long-term dynamics of measles in London: Titrating the impact of wars, the 1918 pandemic, and vaccination," PLOS Computational Biology, Public Library of Science, vol. 15(9), pages 1-14, September.
  • Handle: RePEc:plo:pcbi00:1007305
    DOI: 10.1371/journal.pcbi.1007305
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1007305
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1007305&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1007305?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1007305. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.