IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006819.html
   My bibliography  Save this article

Multiscale modeling of influenza A virus replication in cell cultures predicts infection dynamics for highly different infection conditions

Author

Listed:
  • Daniel Rüdiger
  • Sascha Young Kupke
  • Tanja Laske
  • Pawel Zmora
  • Udo Reichl

Abstract

Influenza A viruses (IAV) are commonly used to infect animal cell cultures for research purposes and vaccine production. Their replication is influenced strongly by the multiplicity of infection (MOI), which ranges over several orders of magnitude depending on the respective application. So far, mathematical models of IAV replication have paid little attention to the impact of the MOI on infection dynamics and virus yields. To address this issue, we extended an existing model of IAV replication in adherent MDCK cells with kinetics that explicitly consider the time point of cell infection. This modification does not only enable the fitting of high MOI measurements, but also the successful prediction of viral release dynamics of low MOI experiments using the same set of parameters. Furthermore, this model allows the investigation of defective interfering particle (DIP) propagation in different MOI regimes. The key difference between high and low MOI conditions is the percentage of infectious virions among the total virus particle release. Simulation studies show that DIP interference at a high MOI is determined exclusively by the DIP content of the seed virus while, in low MOI conditions, it is predominantly controlled by the de novo generation of DIPs. Overall, the extended model provides an ideal framework for the prediction and optimization of cell culture-derived IAV manufacturing and the production of DIPs for therapeutic use.Author summary: Influenza is a contagious respiratory disease that severely affects several million people each year. Vaccination can provide protection against the infection, but vaccine composition has to be adjusted regularly to remain effective against this fast evolving pathogen. While influenza vaccines are mostly produced in embryonated chicken eggs, cell culture-based vaccine production is developing as an alternative providing controlled process conditions in closed systems, better scalability, and a short response time in case of pandemic outbreaks. Here, we employ a computational model to describe underlying mechanisms during the IAV infection in adherent MDCK cells. Special attention was paid on the influence of the MOI on virus spread in cell populations. Although dynamics between infections with high and low amounts of infecting virions differ significantly, our model closely captures both scenarios. Furthermore, our results provide insights into IAV-induced apoptosis and the switch from transcription to replication in intracellular IAV replication. Additionally, model simulations indicate how virus particle release is regulated, and what impact defective interfering particles have on virus replication in different infection conditions. Taken together, we developed a computational model that enables detailed analyses of IAV replication dynamics in animal cell culture.

Suggested Citation

  • Daniel Rüdiger & Sascha Young Kupke & Tanja Laske & Pawel Zmora & Udo Reichl, 2019. "Multiscale modeling of influenza A virus replication in cell cultures predicts infection dynamics for highly different infection conditions," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-22, February.
  • Handle: RePEc:plo:pcbi00:1006819
    DOI: 10.1371/journal.pcbi.1006819
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006819
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006819&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006819?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006819. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.