IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006783.html
   My bibliography  Save this article

Predictability in process-based ensemble forecast of influenza

Author

Listed:
  • Sen Pei
  • Mark A Cane
  • Jeffrey Shaman

Abstract

Process-based models have been used to simulate and forecast a number of nonlinear dynamical systems, including influenza and other infectious diseases. In this work, we evaluate the effects of model initial condition error and stochastic fluctuation on forecast accuracy in a compartmental model of influenza transmission. These two types of errors are found to have qualitatively similar growth patterns during model integration, indicating that dynamic error growth, regardless of source, is a dominant component of forecast inaccuracy. We therefore examine the nonlinear growth of model initial error and compute the fastest growing directions using singular vector analysis. Using this information, we generate perturbations in an ensemble forecast system of influenza to obtain more optimal ensemble spread. In retrospective forecasts of historical outbreaks for 95 US cities from 2003 to 2014, this approach improves short-term forecast of incidence over the next one to four weeks.Author summary: Mathematical models are now used to forecast infectious disease incidence at the population scale. By better understanding how errors in prediction systems are introduced, grow and impact the predictability of infectious disease, forecast accuracy could be improved. Here we explore the growth pattern of errors introduced from two major sources–model initial conditions and stochastic fluctuation–in a simple, compartmental model describing influenza transmission. We find that model initial error typically undergoes faster growth due to nonlinear amplification during model evolution. Adopting techniques used in numerical weather prediction, we leverage this growth of uncertainty and modify an ensemble forecast system to generate optimal perturbations along the fastest growing direction of initial error. This perturbation procedure increases ensemble spread, which better captures observations with large uncertainties. In retrospective forecasts for 95 US cities during the 2003 through 2014 flu seasons, this procedure leads to a substantial improvement of short-term forecast quality.

Suggested Citation

  • Sen Pei & Mark A Cane & Jeffrey Shaman, 2019. "Predictability in process-based ensemble forecast of influenza," PLOS Computational Biology, Public Library of Science, vol. 15(2), pages 1-19, February.
  • Handle: RePEc:plo:pcbi00:1006783
    DOI: 10.1371/journal.pcbi.1006783
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006783
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006783&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006783?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006783. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.