IDEAS home Printed from https://ideas.repec.org/a/plo/pcbi00/1006610.html
   My bibliography  Save this article

On variational solutions for whole brain serial-section histology using a Sobolev prior in the computational anatomy random orbit model

Author

Listed:
  • Brian C Lee
  • Daniel J Tward
  • Partha P Mitra
  • Michael I Miller

Abstract

This paper presents a variational framework for dense diffeomorphic atlas-mapping onto high-throughput histology stacks at the 20 μm meso-scale. The observed sections are modelled as Gaussian random fields conditioned on a sequence of unknown section by section rigid motions and unknown diffeomorphic transformation of a three-dimensional atlas. To regularize over the high-dimensionality of our parameter space (which is a product space of the rigid motion dimensions and the diffeomorphism dimensions), the histology stacks are modelled as arising from a first order Sobolev space smoothness prior. We show that the joint maximum a-posteriori, penalized-likelihood estimator of our high dimensional parameter space emerges as a joint optimization interleaving rigid motion estimation for histology restacking and large deformation diffeomorphic metric mapping to atlas coordinates. We show that joint optimization in this parameter space solves the classical curvature non-identifiability of the histology stacking problem. The algorithms are demonstrated on a collection of whole-brain histological image stacks from the Mouse Brain Architecture Project.Author summary: New developments in neural tracing techniques have motivated the widespread use of histology as a modality for exploring the circuitry of the brain. Automated mapping of pre-labeled atlases onto modern large datasets of histological imagery is a critical step for elucidating the brain’s neural circuitry and shape. This task is challenging as histological sections are imaged independently and the reconstruction of the unsectioned volume is nontrivial. Typically, neuroanatomists use reference volumes of the same subject (e.g. MRI) to guide reconstruction. However, obtaining reference imagery is often non-standard, as in high-throughput animal models like mouse histology. Others have proposed using anatomical atlases as guides, but have not accounted for the intrinsic nonlinear shape difference from atlas to subject. Our method addresses these limitations by jointly optimizing reconstruction informed by an atlas simultaneously with the nonlinear change of coordinates that encapsulates anatomical variation. This accounts for intrinsic shape differences and enables rigorous, direct comparisons of atlas and subject coordinates. Using simulations, we demonstrate that our method recovers the reconstruction parameters more accurately than atlas-free models and innately produces accurate segmentations from simultaneous atlas mapping. We also demonstrate our method on the Mouse Brain Architecture dataset, successfully mapping and reconstructing over 1000 brains.

Suggested Citation

  • Brian C Lee & Daniel J Tward & Partha P Mitra & Michael I Miller, 2018. "On variational solutions for whole brain serial-section histology using a Sobolev prior in the computational anatomy random orbit model," PLOS Computational Biology, Public Library of Science, vol. 14(12), pages 1-20, December.
  • Handle: RePEc:plo:pcbi00:1006610
    DOI: 10.1371/journal.pcbi.1006610
    as

    Download full text from publisher

    File URL: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1006610
    Download Restriction: no

    File URL: https://journals.plos.org/ploscompbiol/article/file?id=10.1371/journal.pcbi.1006610&type=printable
    Download Restriction: no

    File URL: https://libkey.io/10.1371/journal.pcbi.1006610?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:plo:pcbi00:1006610. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: ploscompbiol (email available below). General contact details of provider: https://journals.plos.org/ploscompbiol/ .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.